Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1342098, 2024.
Article in English | MEDLINE | ID: mdl-38633706

ABSTRACT

A novel Gram-negative, obligate anaerobe, non-motile, flagella-lacking, catalase- and oxidase-negative, coccobacilli-shaped bacterial strain designated AGMB02718T was isolated from swine feces. The 16S rRNA gene analysis indicated that strain AGMB02718T belonged to the genus Mesosutterella with the highest similarity to M. multiformis 4NBBH2T (= DSM 106860T) (sequence similarity of 96.2%), forming a distinct phylogenetic lineage. Its growth occurred at 25-45°C (optimal 37°C) and in 0.5-1% NaCl (optimal 0.5%). Strain AGMB02718T was asaccharolytic and contained menaquinone 6 (MK-6) and methylmenaquinone 6 (MMK-6) as the predominant respiratory quinones. The major cellular fatty acids in the isolate were C18:1ω9c and C16:0. Based on the whole-genome sequencing analysis, strain AGMB02718T had a 2,606,253 bp circular chromosome with a G + C content of 62.2%. The average nucleotide identity value between strain AGMB02718T and M. multiformis 4NBBH2T was 72.1%, while the digital DNA-DNA hybridization value was 20.9%. Interestingly, genome analysis suggested that strain AGMB02718T possessed a low-toxicity lipopolysaccharide (LPS) because the genome of the isolate does not include lpxJ and lpxM genes for Kdo2-Lipid A (KLA) assembly, which confers high toxicity to LPS. Moreover, in vitro macrophage stimulation assay confirmed that AGMB02718T produced LPS with low toxicity. Because the low-toxicity LPS produced by the Sutterellaceae family is involved in regulating host immunity and low-toxicity LPS-producing strains can help maintain host immune homeostasis, we evaluated the anti-inflammatory activity of strain AGMB02718T against inflammatory bowel disease (IBD). As a result, strain AGMB02718T was able to prevent the inflammatory response in a dextran sulfate sodium (DSS)-induced colitis model. Therefore, this strain represents a novel species of Mesosutterella that has a protective effect against DSS-induced colitis, and the proposed name is Mesosutterella faecium sp. nov. The type strain is AGMB02718T (=GDMCC 1.2717T = KCTC 25541T).

2.
Arch Microbiol ; 206(1): 19, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086977

ABSTRACT

Obesity is a global health threat that causes various complications such as type 2 diabetes and nonalcoholic fatty liver disease. Gut microbiota is closely related to obesity. In particular, a higher Firmicutes to Bacteroidetes ratio has been reported as a biomarker of obesity, suggesting that the phylum Bacteroidetes may play a role in inhibiting obesity. Indeed, the genus Bacteroides was enriched in the healthy subjects based on metagenome analysis. In this study, we determined the effects of Bacteroides stercoris KGMB02265, a species belonging to the phylum Bacteroidetes, on obesity both in vitro and in vivo. The cell-free supernatant of B. stercoris KGMB02265 inhibited lipid accumulation in 3T3-L1 preadipocytes, in which the expression of adipogenic marker genes was repressed. In vivo study showed that the oral administration of B. stercoris KGMB02265 substantially reduced body weight and fat weight in high-fat diet induced obesity in mice. Furthermore, obese mice orally administered with B. stercoris KGMB02265 restored glucose sensitivity and reduced leptin and triglyceride levels. Taken together, our study reveals that B. stercoris KGMB02265 has anti-obesity activity and suggests that it may be a promising candidate for treating obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Mice , Animals , Diabetes Mellitus, Type 2/complications , Obesity , Bacteroides/genetics , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...