Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Biol Macromol ; 265(Pt 1): 130696, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458288

ABSTRACT

There has been significant progress in the field of three-dimensional (3D) bioprinting technology, leading to active research on creating bioinks capable of producing structurally and functionally tissue-mimetic constructs. Ti3C2Tx MXene nanoparticles (NPs), promising two-dimensional nanomaterials, are being investigated for their potential in muscle regeneration due to their unique physicochemical properties. In this study, we integrated MXene NPs into composite hydrogels made of gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) to develop bioinks (namely, GHM bioink) that promote myogenesis. The prepared GHM bioinks were found to offer excellent printability with structural integrity, cytocompatibility, and microporosity. Additionally, MXene NPs within the 3D bioprinted constructs encouraged the differentiation of C2C12 cells into skeletal muscle cells without additional support of myogenic agents. Genetic analysis indicated that representative myogenic markers both for early and late myogenesis were significantly up-regulated. Moreover, animal studies demonstrated that GHM bioinks contributed to enhanced regeneration of skeletal muscle while reducing immune responses in mice models with volumetric muscle loss (VML). Our results suggest that the GHM hydrogel can be exploited to craft a range of strategies for the development of a novel bioink to facilitate skeletal muscle regeneration because these MXene-incorporated composite materials have the potential to promote myogenesis.


Subject(s)
Hydrogels , Nanoparticles , Nitrites , Transition Elements , Mice , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Gelatin/chemistry , Printing, Three-Dimensional , Glycosaminoglycans , Muscle, Skeletal , Tissue Scaffolds/chemistry , Tissue Engineering/methods
2.
J Med Virol ; 96(1): e29386, 2024 01.
Article in English | MEDLINE | ID: mdl-38235919

ABSTRACT

Human papillomavirus (HPV) is a major causative factor of head and neck squamous cell carcinoma (HNSCC), and the incidence of HPV- associated HNSCC is increasing. The role of tumor microenvironment in viral infection and metastasis needs to be explored further. We studied the molecular characteristics of primary tumors (PTs) and lymph node metastatic tumors (LNMTs) by stratifying them based on their HPV status. Eight samples for single-cell RNA profiling and six samples for spatial transcriptomics (ST), composed of matched primary tumors (PT) and lymph node metastases (LNMT), were collected from both HPV- negative (HPV- ) and HPV-positive (HPV+ ) patients. Using the 10x Genomics Visium platform, integrative analyses with single-cell RNA sequencing were performed. Intracellular and intercellular alterations were analyzed, and the findings were confirmed using experimental validation and publicly available data set. The HPV+ tissues were composed of a substantial amount of lymphoid cells regardless of the presence or absence of metastasis, whereas the HPV- tissue exhibited remarkable changes in the number of macrophages and plasma cells, particularly in the LNMT. From both single-cell RNA and ST data set, we discovered a central gene, pyruvate kinase muscle isoform 1/2 (PKM2), which is closely associated with the stemness of cancer stem cell-like populations in LNMT of HPV- tissue. The consistent expression was observed in HPV- HNSCC cell line and the knockdown of PKM2 weakened spheroid formation ability. Furthermore, we found an ectopic lymphoid structure morphology and clinical effects of the structure in ST slide of the HPV+ patients and verified their presence in tumor tissue using immunohistochemistry. Finally, the ephrin-A (EPHA2) pathway was detected as important signals in angiogenesis for HPV- patients from single-cell RNA and ST profiles, and knockdown of EPHA2 declined the cell migration. Our study described the distinct cellular composition and molecular alterations in primary and metastatic sites in HNSCC patients based on their HPV status. These results provide insights into HNSCC biology in the context of HPV infection and its potential clinical implications.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinoma, Squamous Cell/pathology , Human Papillomavirus Viruses , Papillomaviridae/genetics , Head and Neck Neoplasms/genetics , Gene Expression Profiling/methods , RNA , Tumor Microenvironment/genetics
3.
Nanomicro Lett ; 16(1): 73, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175358

ABSTRACT

Current therapeutic approaches for volumetric muscle loss (VML) face challenges due to limited graft availability and insufficient bioactivities. To overcome these limitations, tissue-engineered scaffolds have emerged as a promising alternative. In this study, we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone) integrated with collagen and Ti3C2Tx MXene nanoparticles (NPs) (PCM matrices), and explored their myogenic potential for skeletal muscle tissue regeneration. The PCM matrices demonstrated favorable physicochemical properties, including structural uniformity, alignment, microporosity, and hydrophilicity. In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts. Moreover, in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury. Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices, leading to elevated intracellular Ca2+ levels in myoblasts through the activation of inducible nitric oxide synthase (iNOS) and serum/glucocorticoid regulated kinase 1 (SGK1), ultimately promoting myogenic differentiation via the mTOR-AKT pathway. Additionally, upregulated iNOS and increased NO- contributed to myoblast proliferation and fiber fusion, thereby facilitating overall myoblast maturation. These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.

SELECTION OF CITATIONS
SEARCH DETAIL