Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Clin Nutr ; 43(1): 246-258, 2024 01.
Article En | MEDLINE | ID: mdl-38101315

BACKGROUND: The relationship between lipid mediators and severe obesity remains unclear. Our study investigates the impact of severe obesity on plasma concentrations of oxylipins and fatty acids and explores the consequences of weight loss. METHODS: In the clinical trial identifier NCT05554224 study, 116 patients with severe obesity and 63 overweight/obese healthy controls matched for age and sex (≈2:1) provided plasma. To assess the effect of surgically induced weight loss, we requested paired plasma samples from 44 patients undergoing laparoscopic sleeve gastrectomy one year after the procedure. Oxylipins were measured using ultra-high-pressure liquid chromatography coupled to a triple quadrupole mass spectrometer via semi-targeted lipidomics. Cytokines and markers of interorgan crosstalk were measured using enzyme-linked immunosorbent assays. RESULTS: We observed significantly elevated levels of circulating fatty acids and oxylipins in patients with severe obesity compared to their metabolically healthier overweight/obese counterparts. Our findings indicated that sex and liver disease were not confounding factors, but we observed weak correlations in plasma with circulating adipokines, suggesting the influence of adipose tissue. Importantly, while weight loss restored the balance in circulating fatty acids, it did not fully normalize the oxylipin profile. Before surgery, oxylipins derived from lipoxygenase activity, such as 12-HETE, 11-HDoHE, 14-HDoHE, and 12-HEPE, were predominant. However, one year following laparoscopic sleeve gastrectomy, we observed a complex shift in the oxylipin profile, favoring species from the cyclooxygenase pathway, particularly proinflammatory prostanoids like TXB2, PGE2, PGD2, and 12-HHTrE. This transformation appears to be linked to a reduction in adiposity, underscoring the role of lipid turnover in the development of metabolic disorders associated with severe obesity. CONCLUSIONS: Despite the reduction in fatty acid levels associated with weight loss, the oxylipin profile shifts towards a predominance of more proinflammatory species. These observations underscore the significance of seeking mechanistic approaches to address severe obesity and emphasize the importance of closely monitoring the metabolic adaptations after weight loss.


Obesity, Morbid , Oxylipins , Humans , Fatty Acids , Obesity , Obesity, Morbid/surgery , Overweight , Weight Loss
2.
Metabolism ; 152: 155765, 2024 Mar.
Article En | MEDLINE | ID: mdl-38142958

BACKGROUND AND AIM: The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS: Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS: This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.


Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , Diet, High-Fat , Fatty Acids/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Liver/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
3.
Bio Protoc ; 13(17): e4803, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37719073

The subfractionation of the endoplasmic reticulum (ER) is a widely used technique in cell biology. However, current protocols present limitations such as low yield, the use of large number of dishes, and contamination with other organelles. Here, we describe an improved method for ER subfractionation that solves other reported methods' main limitations of being time consuming and requiring less starting material. Our protocol involves a combination of different centrifugations and special buffer incubations as well as a fine-tuned method for homogenization followed by western blotting to confirm the purity of the fractions. This protocol contains a method to extract clean ER samples from cells using only five (150 mm) dishes instead of over 50 plates needed in other protocols. In addition, in this article we not only propose a new cell fractionation approach but also an optimized method to isolate pure ER fractions from one mouse liver instead of three, which are commonly used in other protocols. The protocols described here are optimized for time efficiency and designed for seamless execution in any laboratory, eliminating the need for special/patented reagents. Key features • Subcellular fractionation from cells and mouse liver. • Uses only five dishes (150 mm) or one mouse liver to extract highly enriched endoplasmic reticulum without mitochondrial-associated membrane contamination. • These protocols require the use of ultracentrifuges, dounce homogenizers, and/or Teflon Potter Elvehjem. As a result, highly enriched/clean samples are obtained. Graphical overview.

4.
Science ; 380(6651): eadh9351, 2023 06 23.
Article En | MEDLINE | ID: mdl-37347868

In eukaryotic cells, different organelles interact at membrane contact sites stabilized by tethers. Mitochondrial mitofusin 2 (MFN2) acts as a membrane tether that interacts with an unknown partner on the endoplasmic reticulum (ER). In this work, we identified the MFN2 splice variant ERMIT2 as the ER tethering partner of MFN2. Splicing of MFN2 produced ERMIT2 and ERMIN2, two ER-specific variants. ERMIN2 regulated ER morphology, whereas ERMIT2 localized at the ER-mitochondria interface and interacted with mitochondrial mitofusins to tether ER and mitochondria. This tethering allowed efficient mitochondrial calcium ion uptake and phospholipid transfer. Expression of ERMIT2 ameliorated the ER stress, inflammation, and fibrosis typical of liver-specific Mfn2 knockout mice. Thus, ER-specific MFN2 variants display entirely extramitochondrial MFN2 functions involved in interorganellar tethering and liver metabolic activities.


Calcium , Endoplasmic Reticulum , GTP Phosphohydrolases , Mitochondria , Mitochondrial Proteins , Animals , Mice , Calcium/metabolism , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Liver/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Isoforms , Mice, Knockout , Humans , Mice, Inbred C57BL , HeLa Cells , Alternative Splicing , Endoplasmic Reticulum Stress
5.
Redox Biol ; 61: 102630, 2023 05.
Article En | MEDLINE | ID: mdl-36796135

Type 2 diabetes mellitus (T2D) affects millions of people worldwide and is one of the leading causes of morbidity and mortality. The skeletal muscle (SKM) is one of the most important tissues involved in maintaining glucose homeostasis and substrate oxidation, and it undergoes insulin resistance in T2D. In this study, we identify the existence of alterations in the expression of mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in skeletal muscle from two different forms of T2D: early-onset type 2 diabetes (YT2) (onset of the disease before 30 years of age) and the classical form of the disease (OT2). GSEA analysis from microarray studies revealed the repression of mitochondrial mt-aaRSs independently of age, which was validated by real-time PCR assays. In agreement with this, a reduced expression of several encoding mt-aaRSs was also detected in skeletal muscle from diabetic (db/db) mice but not in obese ob/ob mice. In addition, the expression of the mt-aaRSs proteins most relevant in the synthesis of mitochondrial proteins, threonyl-tRNA, and leucyl-tRNA synthetases (TARS2 and LARS2) were also repressed in muscle from db/db mice. It is likely that these alterations participate in the reduced expression of proteins synthesized in the mitochondria detected in db/db mice. We also document an increased iNOS abundance in mitochondrial-enriched muscle fractions from diabetic mice that may inhibit aminoacylation of TARS2 and LARS2 by nitrosative stress. Our results indicate a reduced expression of mt-aaRSs in skeletal muscle from T2D patients, which may participate in the reduced expression of proteins synthesized in mitochondria. An enhanced mitochondrial iNOS could play a regulatory role in diabetes.


Amino Acyl-tRNA Synthetases , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Down-Regulation , Amino Acyl-tRNA Synthetases/genetics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , RNA, Transfer/metabolism
6.
Biomedicines ; 10(5)2022 May 23.
Article En | MEDLINE | ID: mdl-35625937

Phospholipids are the basic structure block of eukaryotic membranes, in both the outer and inner membranes, which delimit cell organelles. Phospholipids can also be damaged by oxidative stress produced by mitochondria, for instance, becoming oxidized phospholipids. These damaged phospholipids have been related to prevalent diseases such as atherosclerosis or non-alcoholic steatohepatitis (NASH) because they alter gene expression and induce cellular stress and apoptosis. One of the main sites of phospholipid synthesis is the endoplasmic reticulum (ER). ER association with other organelles through membrane contact sites (MCS) provides a close apposition for lipid transport. Additionally, an important advance in this small cytosolic gap are lipid transfer proteins (LTPs), which accelerate and modulate the distribution of phospholipids in other organelles. In this regard, LTPs can be established as an essential point within phospholipid circulation, as relevant data show impaired phospholipid transport when LTPs are defected. This review will focus on phospholipid function, metabolism, non-vesicular transport, and associated diseases.

7.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34884763

The adipokine Neuregulin 4 (Nrg4) protects against obesity-induced insulin resistance. Here, we analyze how the downregulation of Nrg4 influences insulin action and the underlying mechanisms in adipocytes. Validated shRNA lentiviral vectors were used to generate scramble (Scr) and Nrg4 knockdown (KD) 3T3-L1 adipocytes. Adipogenesis was unaffected in Nrg4 KD adipocytes, but there was a complete impairment of the insulin-induced 2-deoxyglucose uptake, which was likely the result of reduced insulin receptor and Glut4 protein. Downregulation of Nrg4 enhanced the expression of proinflammatory cytokines. Anti-inflammatory agents recovered the insulin receptor, but not Glut4, content. Proteins enriched in Glut4 storage vesicles such as the insulin-responsive aminopeptidase (IRAP) and Syntaxin-6 as well as TBC1D4, a protein involved in the intracellular retention of Glut4 vesicles, also decreased by Nrg4 KD. Insulin failed to reduce autophagy in Nrg4 KD adipocytes, observed by a minor effect on mTOR phosphorylation, at the time that proteins involved in autophagy such as LC3-II, Rab11, and Clathrin were markedly upregulated. The lysosomal activity inhibitor bafilomycin A1 restored Glut4, IRAP, Syntaxin-6, and TBC1D4 content to those found in control adipocytes. Our study reveals that Nrg4 preserves the insulin responsiveness by preventing inflammation and, in turn, benefits the insulin regulation of autophagy.


Autophagy/physiology , Glucose Transporter Type 4/metabolism , Insulin Resistance/physiology , Neuregulins/metabolism , Receptor, Insulin/biosynthesis , 3T3 Cells , Adipocytes/metabolism , Animals , Cell Line , Cystinyl Aminopeptidase/biosynthesis , Cytokines/biosynthesis , Deoxyglucose/metabolism , Down-Regulation , GTPase-Activating Proteins/biosynthesis , Inflammation/pathology , Insulin/metabolism , Mice , Neuregulins/biosynthesis , Neuregulins/genetics , Qa-SNARE Proteins/biosynthesis , RNA Interference , RNA, Small Interfering/genetics
8.
Cancers (Basel) ; 13(11)2021 May 24.
Article En | MEDLINE | ID: mdl-34073868

Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer. Due to its rising incidence and limited therapeutic options, HCC has become a leading cause of cancer-related death worldwide, accounting for 85% of all deaths due to primary liver cancers. Standard therapy for advanced-stage HCC is based on anti-angiogenic drugs such as sorafenib and, more recently, lenvatinib and regorafenib as a second line of treatment. The identification of novel therapeutic strategies is urgently required. Mitochondrial dynamics describes a group of processes that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial morphology and distribution, and connectivity mediated by tethering and fusion/fission events. In recent years, mitochondrial dynamic processes have emerged as key processes in the maintenance of liver mitochondrial homeostasis. In addition, some data are accumulating on the role played by mitochondrial dynamics during cancer development, and specifically on how such dynamics act directly on tumor cells or indirectly on cells responsible for tumor aggression and defense. Here, we review the data that suggest mitochondrial dynamics to be involved in the development of liver tumors.

9.
Int J Mol Sci ; 22(11)2021 May 24.
Article En | MEDLINE | ID: mdl-34073989

(1) Background: The transforming growth factor (TGF)-ß plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-ß expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-ß induced suppressor effects, responding to this cytokine undergoing epithelial-mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-ß in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-ß when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-ß in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process.


Carcinoma, Hepatocellular/metabolism , Epithelial-Mesenchymal Transition/drug effects , Lipid Metabolism/drug effects , Liver Neoplasms/metabolism , Metabolome/drug effects , Transcriptome/drug effects , Transforming Growth Factor beta/pharmacology , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing , Hep G2 Cells , Humans , Metabolome/genetics , Metabolomics , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Transcriptome/genetics
10.
Hum Mol Genet ; 29(21): 3554-3565, 2021 01 06.
Article En | MEDLINE | ID: mdl-33219378

The glycogenin knockout mouse is a model of Glycogen Storage Disease type XV. These animals show high perinatal mortality (90%) due to respiratory failure. The lungs of glycogenin-deficient embryos and P0 mice have a lower glycogen content than that of wild-type counterparts. Embryonic lungs were found to have decreased levels of mature surfactant proteins SP-B and SP-C, together with incomplete processing of precursors. Furthermore, non-surviving pups showed collapsed sacculi, which may be linked to a significantly reduced amount of surfactant proteins. A similar pattern was observed in glycogen synthase1-deficient mice, which are devoid of glycogen in the lungs and are also affected by high perinatal mortality due to atelectasis. These results indicate that glycogen availability is a key factor for the burst of surfactant production required to ensure correct lung expansion at the establishment of air breathing. Our findings confirm that glycogen deficiency in lungs can cause respiratory distress syndrome and suggest that mutations in glycogenin and glycogen synthase 1 genes may underlie cases of idiopathic neonatal death.


Glucosyltransferases/physiology , Glycogen Synthase/physiology , Glycoproteins/physiology , Pulmonary Surfactants/metabolism , Respiratory Distress Syndrome/pathology , Animals , Animals, Newborn , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism
11.
Cells ; 9(12)2020 12 04.
Article En | MEDLINE | ID: mdl-33291746

Lipids are important molecules for human health. The quantity and quality of fats consumed in the diet have important effects on the modulation of both the natural biosynthesis and degradation of lipids. There is an important number of lipid-failed associated metabolic diseases and an increasing number of studies suggesting that certain types of lipids might be beneficial to the treatment of many metabolic diseases. The aim of the present work is to expose an overview of de novo biosynthesis, storage, and degradation of lipids in mammalian cells, as well as, to review the published data describing the beneficial effects of these processes and the potential of some dietary lipids to improve metabolic diseases.


Adipose Tissue/metabolism , Dietary Fats , Lipid Metabolism , Metabolic Diseases/metabolism , Animals , Biomarkers/metabolism , Cholesterol/metabolism , Diet , Eicosanoids/metabolism , GTP Phosphohydrolases/metabolism , Homeostasis , Humans , Mitochondrial Proteins/metabolism , Phospholipids/metabolism , Sterols/metabolism , Triglycerides/metabolism
12.
Autophagy ; 16(12): 2307-2309, 2020 12.
Article En | MEDLINE | ID: mdl-33171058

MFN2 (mitofusin 2) is required for mitochondrial fusion and for mitochondria-endoplasmic reticulum interaction. Using myeloid-conditional KO mice models, we found that MFN2 but not MFN1 is a prerequisite for the adaptation of mitochondrial respiration to stress conditions as well as for the production of reactive oxygen species (ROS). The deficient ROS production in the absence of MFN2 impairs the induction of cytokines and nitric oxide, and is associated with dysfunctional autophagy, apoptosis, phagocytosis, and antigen processing. The lack of MFN2 in macrophages causes an impaired response in a model of non-septic inflammation in mice, as well as a failure in protection from Listeria, Mycobacterium tuberculosis or LPS endotoxemia. These results reveal an unexpected role of MFN2 to ROS production in macrophages affecting natural and acquired immunity and the immune response.


Autophagy , GTP Phosphohydrolases , Animals , Cytokines , GTP Phosphohydrolases/genetics , Macrophages , Mice , Mitochondria , Phagocytosis , Reactive Oxygen Species
13.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Article En | MEDLINE | ID: mdl-31051106

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


GTP Phosphohydrolases/metabolism , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylserines/metabolism , Animals , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammation/metabolism , Liver/pathology , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Primary Cell Culture , Protein Transport/physiology , Signal Transduction , Triglycerides/metabolism
14.
Nat Immunol ; 20(5): 581-592, 2019 05.
Article En | MEDLINE | ID: mdl-30962591

Succinate is a signaling metabolite sensed extracellularly by succinate receptor 1 (SUNCR1). The accumulation of succinate in macrophages is known to activate a pro-inflammatory program; however, the contribution of SUCNR1 to macrophage phenotype and function has remained unclear. Here we found that activation of SUCNR1 had a critical role in the anti-inflammatory responses in macrophages. Myeloid-specific deficiency in SUCNR1 promoted a local pro-inflammatory phenotype, disrupted glucose homeostasis in mice fed a normal chow diet, exacerbated the metabolic consequences of diet-induced obesity and impaired adipose-tissue browning in response to cold exposure. Activation of SUCNR1 promoted an anti-inflammatory phenotype in macrophages and boosted the response of these cells to type 2 cytokines, including interleukin-4. Succinate decreased the expression of inflammatory markers in adipose tissue from lean human subjects but not that from obese subjects, who had lower expression of SUCNR1 in adipose-tissue-resident macrophages. Our findings highlight the importance of succinate-SUCNR1 signaling in determining macrophage polarization and assign a role to succinate in limiting inflammation.


Inflammation/immunology , Macrophages/immunology , Obesity/immunology , Receptors, G-Protein-Coupled/immunology , Adipose Tissue/drug effects , Adipose Tissue/immunology , Adipose Tissue/metabolism , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Gene Expression Profiling/methods , Humans , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Obesity/genetics , Obesity/metabolism , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Succinic Acid/immunology , Succinic Acid/metabolism , Succinic Acid/pharmacology , THP-1 Cells
15.
EMBO J ; 38(10)2019 05 15.
Article En | MEDLINE | ID: mdl-30979779

TP53INP2 positively regulates autophagy by binding to Atg8 proteins. Here, we uncover a novel role of TP53INP2 in death-receptor signaling. TP53INP2 sensitizes cells to apoptosis induced by death receptor ligands. In keeping with this, TP53INP2 deficiency in cultured cells or mouse livers protects against death receptor-induced apoptosis. TP53INP2 binds caspase-8 and the ubiquitin ligase TRAF6, thereby promoting the ubiquitination and activation of caspase-8 by TRAF6. We have defined a TRAF6-interacting motif (TIM) and a ubiquitin-interacting motif in TP53INP2, enabling it to function as a scaffold bridging already ubiquitinated caspase-8 to TRAF6 for further polyubiquitination of caspase-8. Mutations of key TIM residues in TP53INP2 abrogate its interaction with TRAF6 and caspase-8, and subsequently reduce levels of death receptor-induced apoptosis. A screen of cancer cell lines showed that those with higher protein levels of TP53INP2 are more prone to TRAIL-induced apoptosis, making TP53INP2 a potential predictive marker of cancer cell responsiveness to TRAIL treatment. These findings uncover a novel mechanism for the regulation of caspase-8 ubiquitination and reveal TP53INP2 as an important regulator of the death receptor pathway.


Autophagy/genetics , Nuclear Proteins/physiology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Caspase 8/metabolism , Cells, Cultured , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , MCF-7 Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Proteins/genetics , Receptors, Death Domain/genetics , Receptors, Death Domain/metabolism , Signal Transduction/genetics , TNF Receptor-Associated Factor 6/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/therapeutic use , Ubiquitin/metabolism , Ubiquitination/drug effects , Ubiquitination/genetics
16.
Nat Commun ; 8(1): 2068, 2017 12 12.
Article En | MEDLINE | ID: mdl-29233977

Acetaminophen (APAP) is the active component of many medications used to treat pain and fever worldwide. Its overuse provokes liver injury and it is the second most common cause of liver failure. Mitochondrial dysfunction contributes to APAP-induced liver injury but the mechanism by which APAP causes hepatocyte toxicity is not completely understood. Therefore, we lack efficient therapeutic strategies to treat this pathology. Here we show that APAP interferes with the formation of mitochondrial respiratory supercomplexes via the mitochondrial negative regulator MCJ, and leads to decreased production of ATP and increased generation of ROS. In vivo treatment with an inhibitor of MCJ expression protects liver from acetaminophen-induced liver injury at a time when N-acetylcysteine, the standard therapy, has no efficacy. We also show elevated levels of MCJ in the liver of patients with acetaminophen overdose. We suggest that MCJ may represent a therapeutic target to prevent and rescue liver injury caused by acetaminophen.


Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , HSP40 Heat-Shock Proteins/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , Adolescent , Adult , Animals , Chemical and Drug Induced Liver Injury/etiology , Disease Models, Animal , Drug Overdose/complications , Drug Overdose/etiology , Electron Transport Complex I/metabolism , Female , Gene Knockout Techniques , HSP40 Heat-Shock Proteins/antagonists & inhibitors , Hepatocytes , Humans , Liver/cytology , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Primary Cell Culture , RNA, Small Interfering/metabolism , Rotenone/pharmacology , Rotenone/therapeutic use , Uncoupling Agents/pharmacology , Uncoupling Agents/therapeutic use , Young Adult
17.
Sci Rep ; 7(1): 13850, 2017 10 23.
Article En | MEDLINE | ID: mdl-29062026

The molecular mechanisms responsible for the pathophysiological traits of type 2 diabetes are incompletely understood. Here we have performed transcriptomic analysis in skeletal muscle, and plasma metabolomics from subjects with classical and early-onset forms of type 2 diabetes (T2D). Focused studies were also performed in tissues from ob/ob and db/db mice. We document that T2D, both early and late onset, are characterized by reduced muscle expression of genes involved in branched-chain amino acids (BCAA) metabolism. Weighted Co-expression Networks Analysis provided support to idea that the BCAA genes are relevant in the pathophysiology of type 2 diabetes, and that mitochondrial BCAA management is impaired in skeletal muscle from T2D patients. In diabetic mice model we detected alterations in skeletal muscle proteins involved in BCAA metabolism but not in obese mice. Metabolomic analysis revealed increased levels of branched-chain keto acids (BCKA), and BCAA in plasma of T2D patients, which may result from the disruption of muscle BCAA management. Our data support the view that inhibition of genes involved in BCAA handling in skeletal muscle takes place as part of the pathophysiology of type 2 diabetes, and this occurs both in early-onset and in classical type 2 diabetes.


Amino Acids, Branched-Chain/metabolism , Biomarkers/analysis , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Adult , Age of Onset , Amino Acids, Branched-Chain/genetics , Animals , Case-Control Studies , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Profiling , Humans , Insulin Resistance , Male , Metabolomics , Mice , Mice, Obese , Middle Aged , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Young Adult
18.
Sci Rep ; 7(1): 12486, 2017 10 02.
Article En | MEDLINE | ID: mdl-28970582

Transforming Growth Factor beta (TGF-ß) induces tumor cell migration and invasion. However, its role in inducing metabolic reprogramming is poorly understood. Here we analyzed the metabolic profile of hepatocellular carcinoma (HCC) cells that show differences in TGF-ß expression. Oxygen consumption rate (OCR), extracellular acidification rate (ECAR), metabolomics and transcriptomics were performed. Results indicated that the switch from an epithelial to a mesenchymal/migratory phenotype in HCC cells is characterized by reduced mitochondrial respiration, without significant differences in glycolytic activity. Concomitantly, enhanced glutamine anaplerosis and biosynthetic use of TCA metabolites were proved through analysis of metabolite levels, as well as metabolic fluxes from U-13C6-Glucose and U-13C5-Glutamine. This correlated with increase in glutaminase 1 (GLS1) expression, whose inhibition reduced cell migration. Experiments where TGF-ß function was activated with extracellular TGF-ß1 or inhibited through TGF-ß receptor I silencing showed that TGF-ß induces a switch from oxidative metabolism, coincident with a decrease in OCR and the upregulation of glutamine transporter Solute Carrier Family 7 Member 5 (SLC7A5) and GLS1. TGF-ß also regulated the expression of key genes involved in the flux of glycolytic intermediates and fatty acid metabolism. Together, these results indicate that autocrine activation of the TGF-ß pathway regulates oxidative metabolism in HCC cells.


Glycolysis/drug effects , Hepatocytes/drug effects , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Transcriptome , Transforming Growth Factor beta1/pharmacology , Autocrine Communication , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition , Fatty Acids/metabolism , Glucose/metabolism , Glucose/pharmacology , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/metabolism , Glutamine/pharmacology , Glycolysis/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Large Neutral Amino Acid-Transporter 1/genetics , Large Neutral Amino Acid-Transporter 1/metabolism , Metabolome , Oxygen Consumption/genetics , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
20.
Diabetes ; 65(12): 3552-3560, 2016 Dec.
Article En | MEDLINE | ID: mdl-27613809

Mitochondrial function can be influenced by mitochondrial shape and connectivity with other cellular organelles through fusion and fission processes. Disturbances in mitochondrial architecture and mitochondrial fusion-related genes are observed in situations of type 2 diabetes and obesity, leading to a highly fissioned mitochondrial network. To directly test the effect of reduced mitochondrial fusion on hepatic metabolism, we generated mice with a liver-specific deletion of the Mfn1 gene (Mfn1LKO) and monitored their energy homeostasis, mitochondrial function, and susceptibility to diet-induced insulin resistance. Livers from Mfn1LKO mice displayed a highly fragmented mitochondrial network. This was coupled to an enhanced mitochondrial respiration capacity and a preference for the use of lipids as the main energy source. Although Mfn1LKO mice are similar to control mice fed a low-fat diet, they are protected against insulin resistance induced by a high-fat diet. Importantly, Mfn1 deficiency increased complex I abundance and sensitized animals to the hypoglycemic effect of metformin. Our results suggest that targeting Mfn1 could provide novel avenues to ameliorate glucose homeostasis in obese patients and improve the effectiveness of metformin.


GTP Phosphohydrolases/deficiency , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Animals , Diet, High-Fat/adverse effects , GTP Phosphohydrolases/genetics , Homeostasis/drug effects , Insulin Resistance/physiology , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism
...