Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Methods Mol Biol ; 2837: 219-226, 2024.
Article in English | MEDLINE | ID: mdl-39044088

ABSTRACT

HBV-specific CD8+ T cells are only present at the low frequency during chronic infection. Thus, they are often undetectable by conventional ex vivo staining methods using peptide-loaded HLA class I tetramers. Detection sensitivity can be increased by magnetic bead-based enrichment strategies following staining with peptide-loaded HLA class I tetramers. Additionally, some downstream applications like e.g., single cell RNA sequencing of virus-specific CD8+ T cells may also require a pre-enrichment step to increase the frequency of the cells of interest. For this, peptide-loaded HLA class I tetramers-associated magnetic bead-based enrichment is also a suitable method.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatitis B virus , Histocompatibility Antigens Class I , Peptides , CD8-Positive T-Lymphocytes/immunology , Humans , Hepatitis B virus/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Peptides/chemistry , Peptides/immunology , Immunomagnetic Separation/methods , Epitopes, T-Lymphocyte/immunology , Hepatitis B/immunology , Hepatitis B/virology
2.
Elife ; 132024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900146

ABSTRACT

Human leucocyte antigen class I (HLA-I) molecules play a central role for both NK and T-cell responses that prevent serious human cytomegalovirus (HCMV) disease. To create opportunities for viral spread, several HCMV-encoded immunoevasins employ diverse strategies to target HLA-I. Among these, the glycoprotein US10 is so far insufficiently studied. While it was reported that US10 interferes with HLA-G expression, its ability to manipulate classical HLA-I antigen presentation remains unknown. In this study, we demonstrate that US10 recognizes and binds to all HLA-I (HLA-A, -B, -C, -E, -G) heavy chains. Additionally, impaired recruitment of HLA-I to the peptide loading complex was observed. Notably, the associated effects varied significantly dependending on HLA-I genotype and allotype: (i) HLA-A molecules evaded downregulation by US10, (ii) tapasin-dependent HLA-B molecules showed impaired maturation and cell surface expression, and (iii) ß2m-assembled HLA-C, in particular HLA-C*05:01 and -C*12:03, and HLA-G were strongly retained in complex with US10 in the endoplasmic reticulum. These genotype-specific effects on HLA-I were confirmed through unbiased HLA-I ligandome analyses. Furthermore, in HCMV-infected fibroblasts inhibition of overlapping US10 and US11 transcription had little effect on HLA-A, but induced HLA-B antigen presentation. Thus, the US10-mediated impact on HLA-I results in multiple geno- and allotypic effects in a so far unparalleled and multimodal manner.


During a viral infection, the immune system must discriminate between healthy and infected cells to selectively kill infected cells. Healthy cells have different types of molecules known collectively as HLA-I on their surface. These molecules present small fragments of proteins from the cell, called antigens, to patrolling immune cells, known as CTLs or natural killer cells. While CTLs ignore antigens from human proteins (which indicate the cell is healthy), they can bind to and recognize antigens from viral proteins, which triggers them to activate immune responses that kill the infected cell. However, some viruses can prevent infected cells from presenting HLA-I molecules on their surfaces as a strategy to evade the immune system. Natural killer cells have evolved to overcome this challenge. They bind to the HLA-I molecules themselves, which causes them to remain inactive. However, if the HLA-I molecules are missing, the NK cells can more easily switch on and kill the target cell. The human cytomegalovirus is a common virus that causes lifelong infection in humans. Although it rarely causes illness in healthy individuals, it can be life-threatening to newborn babies and for individuals with weakened immune systems. One human cytomegalovirus protein known as US10 was previously found to bind to HLA-I without reducing the levels of these molecules on the surface of the cell. However, its precise role remained unclear. Gerke et al. used several biochemical and cell biology approaches to investigate whether US10 manipulates the quality of the three types of HLA-I, which could impact both CTL and NK cell recognition. The experiments showed that US10 acted differently on the various kinds of HLA-I. To one type, it bound strongly within the cell and prevented it from reaching the surface. US10 also prevented another type of HLA-I from maturing properly and presenting antigens but did not affect the third type of HLA-I. These findings suggest that US10 interferes with the ability of different HLA-I types to present antigens in specific ways. Further research is needed to measure how US10 activity affects immune cells, which may ultimately aid the development of new therapies against human cytomegalovirus and other similar viruses.


Subject(s)
Cytomegalovirus , Histocompatibility Antigens Class I , Humans , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Genotype , Viral Proteins/genetics , Viral Proteins/metabolism , Protein Binding , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Gene Expression Regulation , Antigen Presentation/genetics
3.
Proc Natl Acad Sci U S A ; 121(9): e2315985121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377192

ABSTRACT

Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.


Subject(s)
Histocompatibility Antigens Class I , Hominidae , Animals , Humans , Viral Proteins/metabolism , Cytomegalovirus , Hominidae/genetics , Hominidae/metabolism , Cell Line , Histocompatibility Antigens/metabolism , HLA-A Antigens/metabolism , Peptides/metabolism
4.
Nat Immunol ; 25(2): 343-356, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177282

ABSTRACT

γδ T cells perform heterogeneous functions in homeostasis and disease across tissues. However, it is unclear whether these roles correspond to distinct γδ subsets or to a homogeneous population of cells exerting context-dependent functions. Here, by cross-organ multimodal single-cell profiling, we reveal that various mouse tissues harbor unique site-adapted γδ subsets. Epidermal and intestinal intraepithelial γδ T cells are transcriptionally homogeneous and exhibit epigenetic hallmarks of functional diversity. Through parabiosis experiments, we uncovered cellular states associated with cytotoxicity, innate-like rapid interferon-γ production and tissue repair functions displaying tissue residency hallmarks. Notably, our observations add nuance to the link between interleukin-17-producing γδ T cells and tissue residency. Moreover, transcriptional programs associated with tissue-resident γδ T cells are analogous to those of CD8+ tissue-resident memory T cells. Altogether, this study provides a multimodal landscape of tissue-adapted γδ T cells, revealing heterogeneity, lineage relationships and their tissue residency program.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets , Animals , Mice , Receptors, Antigen, T-Cell, gamma-delta/genetics
5.
J Hepatol ; 80(4): 564-575, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38154741

ABSTRACT

BACKGROUND & AIMS: CD4 T cells shape the neutralizing antibody (nAb) response and facilitate viral clearance in various infections. Knowledge of their phenotype, specificity and dynamics in hepatitis E virus (HEV) infection is limited. HEV is enterically transmitted as a naked virus (nHEV) but acquires a host-derived quasi-envelope (eHEV) when budding from cells. While nHEV is composed of the open reading frame (ORF)-2-derived capsid, eHEV particles also contain ORF3-derived proteins. We aimed to longitudinally characterize the HEV-specific CD4 T cells targeting ORF1, 2 and 3 and antibodies against nHEV or eHEV in immunocompetent individuals with acute and resolved HEV infection. METHODS: HEV-specific CD4 T cells were analyzed by intracellular cytokine staining after stimulation with in silico-predicted ORF1- and ORF2-derived epitopes and overlapping peptides spanning the ORF3 region. Ex vivo multiparametric characterization of capsid-specific CD4 T cells was performed using customized MHC class II tetramers. Total and neutralizing antibodies targeting nHEV or eHEV particles were determined. RESULTS: HEV-specific CD4 T-cell frequencies and antibody titers are highest in individuals with acute infection and decline in a time-dependent process with an antigen hierarchy. HEV-specific CD4 T cells strongly target the ORF2-derived capsid and ORF3-specific CD4 T cells are hardly detectable. NAbs targeting nHEV are found in high titers while eHEV particles are less efficiently neutralized. Capsid-specific CD4 T cells undergo memory formation and stepwise contraction, accompanied by dynamic phenotypical and transcriptional changes over time. CONCLUSION: The viral capsid is the main target of HEV-specific CD4 T cells and antibodies in acute-resolving infection, correlating with efficient neutralization of nHEV. Capsid-specific immunity rapidly emerges followed by a stepwise contraction several years after infection. IMPACT AND IMPLICATIONS: The interplay of CD4 T cells and neutralizing antibody responses is critical in the host defense against viral infections, yet little is known about their characteristics in hepatitis E virus (HEV) infection. We conducted a longitudinal study of immunocompetent individuals with acute and resolved HEV infection to understand the characteristics of HEV-specific CD4 T cells and neutralizing antibodies targeting different viral proteins and particles. We found that HEV-specific CD4 T cells mainly target capsid-derived epitopes. This correlates with efficient neutralization of naked virions while quasi-enveloped particles are less susceptible to neutralization. As individuals with pre-existing liver disease and immunocompromised individuals are at risk for fulminant or chronic courses of HEV infection, these individuals might benefit from the development of vaccination strategies which require a detailed knowledge of the composition and longevity of HEV-specific CD4 T-cell and antibody immunity.


Subject(s)
Hepatitis E virus , Hepatitis E , Humans , CD4-Positive T-Lymphocytes , Capsid/metabolism , Longitudinal Studies , Hepatitis E virus/genetics , Capsid Proteins/metabolism , Epitopes , Antibodies, Neutralizing
6.
Front Immunol ; 14: 1287367, 2023.
Article in English | MEDLINE | ID: mdl-38143742

ABSTRACT

Background and aims: The co-infection of hepatitis B (HBV) patients with the hepatitis D virus (HDV) causes the most severe form of viral hepatitis and thus drastically worsens the course of the disease. Therapy options for HBV/HDV patients are still limited. Here, we investigated the potential of natural killer (NK) cells that are crucial drivers of the innate immune response against viruses to target HDV-infected hepatocytes. Methods: We established in vitro co-culture models using HDV-infected hepatoma cell lines and human peripheral blood NK cells. We determined NK cell activation by flow cytometry, transcriptome analysis, bead-based cytokine immunoassays, and NK cell-mediated effects on T cells by flow cytometry. We validated the mechanisms using CRISPR/Cas9-mediated gene deletions. Moreover, we assessed the frequencies and phenotype of NK cells in peripheral blood of HBV and HDV superinfected patients. Results: Upon co-culture with HDV-infected hepatic cell lines, NK cells upregulated activation markers, interferon-stimulated genes (ISGs) including the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), produced interferon (IFN)-γ and eliminated HDV-infected cells via the TRAIL-TRAIL-R2 axis. We identified IFN-ß released by HDV-infected cells as an important enhancer of NK cell activity. In line with our in vitro data, we observed activation of peripheral blood NK cells from HBV/HDV co-infected, but not HBV mono-infected patients. Conclusion: Our data demonstrate NK cell activation in HDV infection and their potential to eliminate HDV-infected hepatoma cells via the TRAIL/TRAIL-R2 axis which implies a high relevance of NK cells for the design of novel anti-viral therapies.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis D , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Ligands , Hepatitis D/metabolism , Interferons/metabolism , Hepatitis Delta Virus/genetics , Killer Cells, Natural , Tumor Necrosis Factors/metabolism , Apoptosis , Liver Neoplasms/metabolism
7.
Gut ; 72(10): 1971-1984, 2023 10.
Article in English | MEDLINE | ID: mdl-37541771

ABSTRACT

OBJECTIVE: Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. DESIGN: Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. RESULTS: HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. CONCLUSION: Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies.


Subject(s)
Hepatitis B, Chronic , Hepatitis C, Chronic , Hepatitis C , Humans , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Antiviral Agents/therapeutic use , Persistent Infection , Hepatitis C, Chronic/drug therapy , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/metabolism , Hepatitis C/drug therapy , Hepatitis Viruses , Hepatitis B virus
8.
Respir Res ; 24(1): 174, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386635

ABSTRACT

BACKGROUND: C-type natriuretic peptide (CNP) is an endothelium-derived paracrine molecule with an important role in vascular homeostasis. In septic patients, the serum level of the amino-terminal propeptide of CNP (NT-proCNP) shows a strong positive correlation with inflammatory biomarkers and, if elevated, correlates with disease severity and indicates a poor outcome. It is not yet known whether NT-proCNP also correlates with the clinical outcome of patients suffering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the current study, we aimed to determine possible changes in the NT-proCNP levels of patients with coronavirus disease 2019 (COVID-19), with special regard to disease severity and outcome. METHODS: In this retrospective analysis, we determined the serum level of NT-proCNP in hospitalized patients with symptoms of upper respiratory tract infection, using their blood samples taken on admission, stored in a biobank. The NT-proCNP levels of 32 SARS-CoV-2 positive and 35 SARS-CoV-2 negative patients were measured to investigate possible correlation with disease outcome. SARS-CoV-2 positive patients were then divided into two groups based on their need for intensive care unit treatment (severe and mild COVID-19). RESULTS: The NT-proCNP was significantly different in the study groups (e.g. severe and mild COVID-19 and non-COVID-19 patients), but showed inverse changes compared to previous observations in septic patients: lowest levels were detected in critically ill COVID-19 patients, while highest levels in the non-COVID-19 group. A low level of NT-proCNP on admission was significantly associated with severe disease outcome. CONCLUSIONS: Low-level NT-proCNP on hospital admission is associated with a severe COVID-19 disease course. The pathomechanism underlying this observation remains to be elucidated, while future studies in larger patient cohorts are necessary to confirm these observations and reveal therapeutic importance. Trial registration DRKS00026655 Registered 26. November 2021.


Subject(s)
COVID-19 , Sepsis , Humans , SARS-CoV-2 , Retrospective Studies , Patient Acuity
9.
J Hepatol ; 79(3): 666-676, 2023 09.
Article in English | MEDLINE | ID: mdl-37290592

ABSTRACT

BACKGROUND & AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n = 6) and from patients with an initial diagnosis of AIH (n = 9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence, and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways were less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune-like hepatitis. In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor sequencing showed that T and B cell clones were more dominant in VILI than in AIH. In addition, many T cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6, and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 VILI is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. Therefore, VILI may be a separate entity, which is distinct from AIH and more closely related to drug-induced autoimmune-like hepatitis. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI). Our analysis shows that COVID-19 VILI shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that VILI is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 VILI will recover completely and will not develop long-term autoimmune hepatitis.


Subject(s)
COVID-19 , Chemical and Drug Induced Liver Injury, Chronic , Hepatitis, Autoimmune , Humans , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , COVID-19/prevention & control , Liver/pathology , Receptors, Antigen, T-Cell , Vaccination
10.
J Hepatol ; 79(2): 296-313, 2023 08.
Article in English | MEDLINE | ID: mdl-37224925

ABSTRACT

BACKGROUND & AIMS: The progression of non-alcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS: C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH-inducing diets or standard chow for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and µMT mice (containing B cells only in the gastrointestinal tract) were fed a choline-deficient high-fat diet, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with simple steatosis, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and single-cell RNA-sequencing analysis were performed in liver and gastrointestinal tissue to characterise immune cells in mice and humans. RESULTS: Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B cells; additionally, we observed a positive correlation between IgA levels and activated FcRg+ hepatic myeloid cells, as well the extent of liver fibrosis. CONCLUSIONS: Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for the treatment of NASH. IMPACT AND IMPLICATIONS: There is currently no effective treatment for non-alcoholic steatohepatitis (NASH), which is associated with a substantial healthcare burden and is a growing risk factor for hepatocellular carcinoma (HCC). We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we show that the absence of B cells prevented HCC development. B cell-intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets for combinatorial NASH therapies against inflammation and fibrosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Microbiota , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/complications , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Mice, Inbred C57BL , Liver/pathology , Fibrosis , Liver Cirrhosis/complications , Mice, Transgenic , Immunoglobulin A/metabolism , Immunoglobulin A/pharmacology , Disease Models, Animal , Diet, High-Fat/adverse effects
11.
Cancer Immunol Res ; 11(6): 810-829, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37139603

ABSTRACT

There are no targeted therapies for patients with triple-negative breast cancer (TNBC). TNBC is enriched in breast cancer stem cells (BCSC), which play a key role in metastasis, chemoresistance, relapse, and mortality. γδ T cells hold great potential in immunotherapy against cancer and might provide an approach to therapeutically target TNBC. γδ T cells are commonly observed to infiltrate solid tumors and have an extensive repertoire of tumor-sensing mechanisms, recognizing stress-induced molecules and phosphoantigens (pAgs) on transformed cells. Herein, we show that patient-derived triple-negative BCSCs are efficiently recognized and killed by ex vivo expanded γδ T cells from healthy donors. Orthotopically xenografted BCSCs, however, were refractory to γδ T-cell immunotherapy. We unraveled concerted differentiation and immune escape mechanisms: xenografted BCSCs lost stemness, expression of γδ T-cell ligands, adhesion molecules, and pAgs, thereby evading immune recognition by γδ T cells. Indeed, neither promigratory engineered γδ T cells, nor anti-PD-1 checkpoint blockade, significantly prolonged overall survival of tumor-bearing mice. BCSC immune escape was independent of the immune pressure exerted by the γδ T cells and could be pharmacologically reverted by zoledronate or IFNα treatment. These results pave the way for novel combinatorial immunotherapies for TNBC.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/metabolism , Monitoring, Immunologic , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells
12.
Pathogens ; 12(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36839516

ABSTRACT

Adaptive immune responses play an important role in the clinical course of SARS-CoV-2 infection. While evaluations of the virus-specific defense often focus on the humoral response, cellular immunity is crucial for the successful control of infection, with the early development of cytotoxic T cells being linked to efficient viral clearance. Vaccination against SARS-CoV-2 induces both CD4+ and CD8+ T cell responses and permits protection from severe COVID-19, including infection with the currently circulating variants of concern. Nevertheless, in immunocompromised individuals, first data imply significantly impaired SARS-CoV-2-specific immune responses after both natural infection and vaccination. Hence, these high-risk groups require particular consideration, not only in routine clinical practice, but also in the development of future vaccination strategies. In order to assist physicians in the guidance of immunocompromised patients, concerning the management of infection or the benefit of (booster) vaccinations, this review aims to provide a concise overview of the current knowledge about SARS-CoV-2-specific cellular immune responses in the vulnerable cohorts of cancer patients, people living with HIV (PLWH), and solid organ transplant recipients (SOT). Recent findings regarding the virus-specific cellular immunity in these differently immunocompromised populations might influence clinical decision-making in the future.

13.
J Hepatol ; 78(5): 1017-1027, 2023 05.
Article in English | MEDLINE | ID: mdl-36804404

ABSTRACT

BACKGROUND & AIMS: Liver transplant recipients (LTRs) demonstrate a reduced response to COVID-19 mRNA vaccination; however, a detailed understanding of the interplay between humoral and cellular immunity, especially after a third (and fourth) vaccine dose, is lacking. METHODS: We longitudinally compared the humoral, as well as CD4+ and CD8+ T-cell, responses between LTRs (n = 24) and healthy controls (n = 19) after three (LTRs: n = 9 to 16; healthy controls: n = 9 to 14 per experiment) to four (LTRs: n = 4; healthy controls: n = 4) vaccine doses, including in-depth phenotypical and functional characterization. RESULTS: Compared to healthy controls, development of high antibody titers required a third vaccine dose in most LTRs, while spike-specific CD8+ T cells with robust recall capacity plateaued after the second vaccine dose, albeit with a reduced frequency and epitope repertoire compared to healthy controls. This overall attenuated vaccine response was linked to a reduced frequency of spike-reactive follicular T helper cells in LTRs. CONCLUSION: Three doses of a COVID-19 mRNA vaccine induce an overall robust humoral and cellular memory response in most LTRs. Decisions regarding additional booster doses may thus be based on individual vaccine responses as well as evolution of novel variants of concern. IMPACT AND IMPLICATIONS: Due to immunosuppressive medication, liver transplant recipients (LTR) display reduced antibody titers upon COVID-19 mRNA vaccination, but the impact on long-term immune memory is not clear. Herein, we demonstrate that after three vaccine doses, the majority of LTRs not only exhibit substantial antibody titers, but also a robust memory T-cell response. Additional booster vaccine doses may be of special benefit for a small subset of LTRs with inferior vaccine response and may provide superior protection against evolving novel viral variants. These findings will help physicians to guide LTRs regarding the benefit of booster vaccinations.


Subject(s)
COVID-19 , Liver Transplantation , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Immunity, Cellular , RNA, Messenger/genetics , Antibodies, Viral , Transplant Recipients
14.
HLA ; 101(6): 676-677, 2023 06.
Article in English | MEDLINE | ID: mdl-36718102

ABSTRACT

HLA-B*35:574N contains a single nucleotide substitution at nucleotide position 2 (ATG to ACG).


Subject(s)
HLA-B Antigens , Nucleotides , Humans , Codon, Initiator , Alleles , HLA-B Antigens/genetics , Mutation , High-Throughput Nucleotide Sequencing
15.
Res Pract Thromb Haemost ; 7(1): 100025, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36575689

ABSTRACT

Background: Conflicting results have been reported on platelet activity ex vivo and responsiveness in vitro among patients with COVID-19 with or without thromboembolic complications. Objectives: To assess platelet reactivity in patients with moderate disease at early stages of COVID-19. Methods: We performed a prospective, descriptive analysis of 100 consecutive patients presenting with suspected SARS-CoV-2 infection at University Medical Center Freiburg during the first or second wave of the pandemic. Following polymerase chain reaction testing and compliance with study inclusion criteria, 20 SARS-CoV-2-positive and 55 SARS-CoV-2-negative patients (serving as patient controls) were enrolled. In addition, 15 healthy subjects were included. Platelet reactivity was assessed using whole-blood impedance aggregometry and flow cytometry in response to various agonists. Results: Platelet aggregation was significantly impaired in the patients with COVID-19 compared with that in the patient controls or healthy subjects. The reduced platelet responsiveness in the patients with COVID-19 was associated with impaired activation of GPIIb/IIIa (αIIbß3). In contrast, low expression of P-selectin at baseline and intact secretion upon stimulation in vitro suggest that no preactivation in vivo, leading to "exhausted" platelets, had occurred. The proportion of circulating platelet-neutrophil complexes was significantly higher in the patients with COVID-19 (mean ± SD, 41% ± 13%) than in the patient controls (18% ± 7%; 95% CI, 11.1-34.1; P = .0002) or healthy subjects (17% ± 4%; 95% CI, 13.8-33.8; P < .0001). An analysis of neutrophil adhesion receptors revealed upregulation of CD11b (α-subunit of αMß2) and CD66b (CEACAM8) but not of CD162 (PSGL-1) in the patients with COVID-19. Conclusion: Despite reduced platelet responsiveness, platelet-neutrophil complexes are increased at early stages of moderate disease. Thus, this cellular interaction may occur during COVID-19 without preceding platelet activation.

16.
Front Immunol ; 13: 933191, 2022.
Article in English | MEDLINE | ID: mdl-36505422

ABSTRACT

Vitamin D (VD) deficiency is a highly prevalent worldwide phenomenon and is extensively discussed as a risk factor for the development of systemic lupus erythematosus (SLE) and other immune-mediated diseases. In addition, it is now appreciated that VD possesses multiple immunomodulatory effects. This study aims to explore the impact of dietary VD intake on lupus manifestation and pathology in lupus-prone NZB/W F1 mice and identify the underlying immunological mechanisms modulated by VD. Here, we show that low VD intake accelerates lupus progression, reflected in reduced overall survival and an earlier onset of proteinuria, as well higher concentrations of anti-double-stranded DNA autoantibodies. This unfavorable effect gained statistical significance with additional low maternal VD intake during the prenatal period. Among examined immunological effects, we found that low VD intake consistently hampered the adoption of a regulatory phenotype in lymphocytes, significantly reducing both IL-10-expressing and regulatory CD4+ T cells. This goes along with a mildly decreased frequency of IL-10-expressing B cells. We did not observe consistent effects on the phenotype and function of innate immune cells, including cytokine production, costimulatory molecule expression, and phagocytic capacity. Hence, our study reveals that low VD intake promotes lupus pathology, likely via the deviation of adaptive immunity, and suggests that the correction of VD deficiency might not only exert beneficial functions by preventing osteoporosis but also serve as an important module in prophylaxis and as an add-on in the treatment of lupus and possibly other immune-mediated diseases. Further research is required to determine the most appropriate dosage, as too-high VD serum levels may also induce adverse effects, possibly also on lupus pathology.


Subject(s)
Vitamin D Deficiency , Vitamin D , Animals , Mice , Female , Pregnancy , Interleukin-10 , Mice, Inbred NZB , Vitamins , Diet
17.
Sci Transl Med ; 14(676): eabj4221, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542691

ABSTRACT

Tissue fibrosis is a key driver of end-stage organ failure and cancer, overall accounting for up to 45% of deaths in developed countries. There is a large unmet medical need for antifibrotic therapies. Claudin-1 (CLDN1) is a member of the tight junction protein family. Although the role of CLDN1 incorporated in tight junctions is well established, the function of nonjunctional CLDN1 (njCLDN1) is largely unknown. Using highly specific monoclonal antibodies targeting a conformation-dependent epitope of exposed njCLDN1, we show in patient-derived liver three-dimensional fibrosis and human liver chimeric mouse models that CLDN1 is a mediator and target for liver fibrosis. Targeting CLDN1 reverted inflammation-induced hepatocyte profibrogenic signaling and cell fate and suppressed the myofibroblast differentiation of hepatic stellate cells. Safety studies of a fully humanized antibody in nonhuman primates did not reveal any serious adverse events even at high steady-state concentrations. Our results provide preclinical proof of concept for CLDN1-specific monoclonal antibodies for the treatment of advanced liver fibrosis and cancer prevention. Antifibrotic effects in lung and kidney fibrosis models further indicate a role of CLDN1 as a therapeutic target for tissue fibrosis across organs. In conclusion, our data pave the way for further therapeutic exploration of CLDN1-targeting therapies for fibrotic diseases in patients.


Subject(s)
Antibodies, Monoclonal , Cell Plasticity , Animals , Mice , Humans , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Claudin-1 , Liver Cirrhosis/drug therapy
18.
Nat Commun ; 13(1): 4631, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941157

ABSTRACT

Immunization with two mRNA vaccine doses elicits robust spike-specific CD8+ T cell responses, but reports of waning immunity after COVID-19 vaccination prompt the introduction of booster vaccination campaigns. However, the effect of mRNA booster vaccination on the spike-specific CD8+ T cell response remains unclear. Here we show that spike-specific CD8+ T cells are activated and expanded in all analyzed individuals receiving the 3rd and 4th mRNA vaccine shots. This CD8+ T cell boost response is followed by a contraction phase and lasts only for about 30-60 days. The spike-specific CD8+ T memory stem cell pool is not affected by the 3rd vaccination. Both 4th vaccination and breakthrough infections with Delta and Omicron rapidly reactivate CD8+ T memory cells. In contrast, neutralizing antibody responses display little boost effect towards Omicron. Thus, COVID-19 mRNA booster vaccination elicits a transient T effector cell response while long-term spike-specific CD8+ T cell immunity is conserved to mount robust memory recall targeting emerging variants of concern.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , RNA, Messenger , Vaccines, Synthetic , mRNA Vaccines
19.
Gastroenterology ; 163(4): 965-981.e31, 2022 10.
Article in English | MEDLINE | ID: mdl-35738329

ABSTRACT

BACKGROUND & AIMS: Exhaustion of CD8 T cells has been suggested to inform different clinical outcomes in Crohn's disease, but detailed analyses are lacking. This study aimed to identify the role of exhaustion on a single-cell level and identify relevant CD8 T cell populations in Crohn's disease. METHODS: Blood and intestinal tissue from 58 patients with Crohn's disease (active disease or remission) were assessed for CD8 T cell expression of exhaustion markers and their cytokine profile by highly multiplexed flow and mass cytometry. Key disease-associated subsets were sorted and analyzed by RNA sequencing. CD39 inhibition assays were performed in vitro. RESULTS: Activated CD39+ and CD39+PD-1+ CD8 T cell subsets expressing multiple exhaustion markers were enriched at low frequency in active Crohn's disease. Their cytokine production capacity was inversely linked to the Harvey-Bradshaw Index. Subset-level protein and transcriptome profiling revealed co-existence of effector and exhaustion programs in CD39+ and CD39+ PD-1+CD8 T cells, with CD39+ cells likely originating from the intestine. CD39 enzymatic activity controlled T cell cytokine production. Importantly, transcriptional exhaustion signatures were enriched in remission in CD39-expressing subsets with up-regulation of TOX. Subset-level transcriptomics revealed a CD39-related gene module that is associated with the clinical course. CONCLUSIONS: These data showed a role for the exhaustion of peripheral CD39-expressing CD8 T cell subsets in Crohn's disease. Their low frequency illustrated the utility of single-cell cytometry methods for identification of relevant immune populations. Importantly, the link of their exhaustion status to the clinical activity and their specific gene signatures have implications for exhaustion-based personalized medicine approaches.


Subject(s)
Apyrase , CD8-Positive T-Lymphocytes , Crohn Disease , Apyrase/blood , Apyrase/genetics , Apyrase/immunology , Biomarkers/blood , CD8-Positive T-Lymphocytes/immunology , Crohn Disease/blood , Crohn Disease/genetics , Crohn Disease/immunology , Cytokines/immunology , Humans , Prognosis , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , T-Lymphocyte Subsets
20.
J Hepatol ; 77(4): 978-990, 2022 10.
Article in English | MEDLINE | ID: mdl-35636577

ABSTRACT

BACKGROUND & AIMS: In immunosuppressed patients, persistent HEV infection is common and may lead to cirrhosis and liver failure. HEV clearance depends on an effective virus-specific CD8+ T-cell response; however, the knowledge gap around HEV-specific CD8+ T-cell epitopes has hindered analysis of the mechanisms of T-cell failure in persistent infection. METHODS: We comprehensively studied HEV-specific CD8+ T-cell responses in 46 patients with self-limiting (n = 34) or chronic HEV infection (n = 12), by epitope-specific expansion, functional testing, ex vivo peptide HLA class I tetramer multi-parametric staining, and viral sequence analysis. RESULTS: We identified 25 HEV-specific CD8+ T-cell epitopes restricted by 9 different HLA class I alleles. In self-limiting HEV infection, HEV-specific CD8+ T cells were vigorous, contracted after resolution of infection, and formed functional memory responses. In contrast, in chronic infection, the HEV-specific CD8+ T-cell response was diminished, declined over time, and displayed phenotypic features of exhaustion. However, improved proliferation of HEV-specific CD8+ T cells, increased interferon-γ production and evolution of a memory-like phenotype were observed upon reduction of immunosuppression and/or ribavirin treatment and were associated with viral clearance. In 1 patient, mutational viral escape in a targeted CD8+ T-cell epitope contributed to CD8+ T-cell failure. CONCLUSION: Chronic HEV infection is associated with HEV-specific CD8+ T-cell exhaustion, indicating that T-cell exhaustion driven by persisting antigen recognition also occurs in severely immunosuppressed hosts. Functional reinvigoration of virus-specific T cells is at least partially possible when antigen is cleared. In a minority of patients, viral escape also contributes to HEV-specific CD8+ T-cell failure and thus needs to be considered in personalized immunotherapeutic approaches. LAY SUMMARY: Hepatitis E virus (HEV) infection is usually cleared spontaneously (without treatment) in patients with fully functioning immune systems. In immunosuppressed patients, chronic HEV infection is common and can progress rapidly to cirrhosis and liver failure. Herein, we identified the presence of HEV-specific CD8+ T cells (a specific type of immune cell that can target HEV) in immunosuppressed patients, but we show that these cells do not function properly. This dysfunction appears to play a role in the development of chronic HEV infection in vulnerable patients.


Subject(s)
Hepatitis E virus , Hepatitis E , Liver Failure , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Interferon-gamma , Liver Cirrhosis , Ribavirin
SELECTION OF CITATIONS
SEARCH DETAIL