Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 65(10): 2, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087934

ABSTRACT

Purpose: Biallelic pathogenic variants in the gene encoding the ATP-binding cassette transporter ABCA4 are the leading cause of irreversible vision loss in inherited retinal dystrophies (IRDs). Interpretation of ABCA4 variants is challenging, due to cis-modifying and hypomorphic variants. We have previously detected 10 missense variants of unknown significance (VUS) in patients with suspected ABCA4-retinal dystrophies (ABCA4-RDs) in Norway. In this study, we functionally characterized the VUS to aid interpretation of the variants and to determine if they are associated with the disease. Methods: The ABCA4 VUS were expressed in HEK293T cells and the ABCA4 expression level and ATPase activity were determined and correlated with the patients' phenotype. The functional data further used for reclassification of the VUS following the American College of Medical Genetics and Genomics (ACMG) guidelines. Results: Of the 10 VUSs, 2 variants, Cys205Phe and Asn415Thr, were categorized as functionally severe. The age at presentation in the 2 patients carrying these variants was divergent and seemed to be driven by the patients' second pathogenic variants Gly1961Glu and c.5461-10T>C, respectively. Three variants, Val643Gly, Pro799Leu, and Val1433Ile were categorized as functionally moderate, and were found in patients with intermediate/late age at presentation. The remaining five variants were categorized as functionally normal/mild. Based on our data, c.614G>T p.(Cys205Phe), c.1244A>C p.(Asn415Thr), and c.2396C>T p.(Pro799Leu) were reclassified to (likely) pathogenic, while 4 of the functionally normal/mild variants could be reclassified to likely benign. Conclusions: Functional analyses of ABCA4 variants are a helpful tool in variant classification and enable us to better predict the disease severity in patients with ABCA4-RDs.


Subject(s)
ATP-Binding Cassette Transporters , Mutation, Missense , Phenotype , Retinal Dystrophies , Humans , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism , Retinal Dystrophies/diagnosis , ATP-Binding Cassette Transporters/genetics , Female , Male , HEK293 Cells , DNA Mutational Analysis , Pedigree , Adult
2.
Front Ophthalmol (Lausanne) ; 4: 1384473, 2024.
Article in English | MEDLINE | ID: mdl-38984108

ABSTRACT

Purpose: To characterize retinal structural biomarkers for progression in adult-onset Stargardt disease from multimodal retinal imaging in-vivo maps. Methods: Seven adult patients (29-69 years; 3 males) with genetically-confirmed and clinically diagnosed adult-onset Stargardt disease and age-matched healthy controls were imaged with confocal and non-confocal Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO), optical coherence tomography (OCT), fundus infrared (FIR), short wavelength-autofluorescence (FAF) and color fundus photography (CFP). Images from each modality were scaled for differences in lateral magnification before montages of AOSLO images were aligned with en-face FIR, FAF and OCT scans to explore changes in retinal structure across imaging modalities. Photoreceptors, retinal pigment epithelium (RPE) cells, flecks, and other retinal alterations in macular regions were identified, delineated, and correlated across imaging modalities. Retinal layer-thicknesses were extracted from segmented OCT images in areas of normal appearance on clinical imaging and intact outer retinal structure on OCT. Eccentricity dependency in cell density was compared with retinal thickness and outer retinal layer thickness, evaluated across patients, and compared with data from healthy controls. Results: In patients with Stargardt disease, alterations in retinal structure were visible in different image modalities depending on layer location and structural properties. The patients had highly variable foveal structure, associated with equally variable visual acuity (-0.02 to 0.98 logMAR). Cone and rod photoreceptors, as well as RPE-like structures in some areas, could be quantified on non-confocal split-detection AOSLO images. RPE cells were also visible on dark field AOSLO images close to the foveal center. Hypo-reflective gaps of non-waveguiding cones (dark cones) were seen on confocal AOSLO in regions with clinically normal CFP, FIR, FAF and OCT appearance and an intact cone inner segment mosaic in three patients. Conclusion: Dark cones were identified as a possible first sign of retinal disease progression in adult-onset Stargardt disease as these are observed in retinal locations with otherwise normal appearance and outer retinal thickness. This corroborates a previous report where dark cones were proposed as a first sign of progression in childhood-onset Stargardt disease. This also supports the hypothesis that, in Stargardt disease, photoreceptor degeneration occurs before RPE cell death.

3.
Acta Ophthalmol ; 99(5): e733-e746, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33258285

ABSTRACT

PURPOSE: Pathogenic variations in the ABCA4 gene are a leading cause of vision loss in patients with inherited retinal diseases. ABCA4-retinal dystrophies are clinically heterogeneous, presenting with mild to severe degeneration of the retina. The purpose of this study was to clinically and genetically characterize patients with ABCA4-retinal dystrophies in Norway and describe phenotype-genotype associations. METHODS: ABCA4 variants were detected in 111 patients with inherited retinal disease undergoing diagnostic genetic testing over a period of 12 years. In patients where only a single ABCA4 variant was found, whole-gene ABCA4 sequencing was performed and intronic variants were investigated by mRNA analyses in fibroblasts. Medical journals were used to obtain a clinical description and ultrawidefield autofluorescence images were used to analyse retinal degeneration patterns. RESULTS: The genetic diagnostic yield was 89%. The intronic splice variant c.5461-10T>C was the most prevalent disease-causing variant (27%). Whole-gene ABCA4 sequencing detected two novel intronic variants (c.6729+81G>T and c.6817-679C>A) that we showed affected mRNA splicing. Peripheral retinal degeneration was identified in 33% of patients and was associated with genotypes that included severe loss of function variants. By contrast, peripheral degeneration was not found in patients with a disease duration over 20 years and genotypes including p.(Asn1868lle), c.4253+43G>A or p.(Gly1961Glu) in trans with a loss of function variant. CONCLUSION: This study demonstrates the clinical and genetic heterogeneity of ABCA4-retinal dystrophies in Norway. Further, the study presents novel variants and increases our knowledge on phenotype-genotype associations and the presence of peripheral retinal degeneration in ABCA4-retinal dystrophy patients.


Subject(s)
ATP-Binding Cassette Transporters/genetics , DNA/genetics , Genetic Association Studies/methods , Mutation , Retinal Dystrophies/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Genetic Heterogeneity , Genotype , Humans , Infant , Infant, Newborn , Male , Middle Aged , Norway/epidemiology , Pedigree , Phenotype , Retinal Dystrophies/epidemiology , Retinal Dystrophies/metabolism , Rod Cell Outer Segment , Young Adult
4.
Acta Ophthalmol ; 98(3): 286-295, 2020 May.
Article in English | MEDLINE | ID: mdl-31429209

ABSTRACT

PURPOSE: The purpose of this study was to characterize current clinical and genetic knowledge of patients with inherited retinal disease in Norway and give an estimate of the prevalence. These data are necessary to identify patients eligible for new personalized medicines, to facilitate genetic counselling for their families and to plan clinical follow-up. METHODS: A patient registry including clinical and genetic data was established. Clinical data were retrieved during 2003-2018. Genetic testing was performed in the period 2007-2018. RESULTS: The material included 866 patients with 41 clinical diagnoses at the cut-off date. The most prevalent diseases were as follows: retinitis pigmentosa (54%), Stargardt macular dystrophy (6.5%) and Leber congenital amaurosis (5.2%). A genetic diagnosis was identified in 32% of patients. In total, 207 disease-causing variants in 56 genes were reported. The most commonly reported disease-causing genes were ABCA4, USH2A and BEST1. The estimated adjusted minimum prevalence of inherited retinal disease in the south-east region of Norway was 1: 3,856 (2.6/10 000). CONCLUSION: This population-based study demonstrated an estimated prevalence for all inherited retinal diseases in south-east Norway and described the distribution of clinical diagnoses, onset of symptoms, inheritance patterns and genetic data and thereby expands our knowledge of inherited retinal disease in Norway. The newly established registry and biobank will support patient feasibility for future clinical trials, treatment selection and counselling of families.


Subject(s)
Registries , Retinal Diseases/epidemiology , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Genetic Testing , Humans , Infant , Infant, Newborn , Male , Middle Aged , Norway/epidemiology , Population Surveillance , Prevalence , Retinal Diseases/genetics , Young Adult
5.
Ophthalmic Genet ; 40(2): 124-128, 2019 04.
Article in English | MEDLINE | ID: mdl-30932721

ABSTRACT

PURPOSE: To clinically and genetically characterise a second family with dominant ARL3-related retinitis pigmentosa due to a specific ARL3 missense variant, p.(Tyr90Cys). METHODS: Clinical examination included optical coherence tomography, electroretinography, and ultra-wide field retinal imaging with autofluorescence. Retrospective data were collected from the registry of inherited retinal diseases at Oslo university hospital. DNA was analysed by whole-exome sequencing and Sanger sequencing. The ARL3 missense variant was visualized in a 3D-protein structure. RESULTS: The phenotype was non-syndromic retinitis pigmentosa with cataract associated with early onset of decreased central vision and central retinal thinning. Sanger sequencing confirmed the presence of a de novo ARL3 missense variant p.(Tyr90Cys) in the index patient and his affected son. We did not find any other cases with rare ARL3 variants in a cohort of 431 patients with retinitis pigmentosa-like disease. By visualizing Tyr90 in the 3D protein structure, it seems to play an important role in packing of the α/ß structure of ADP-ribosylation factor-like 3 (ARL3). When changing Tyr90 to cysteine, we observe a loss of interactions in the core of the α/ß structure that is likely to affect folding and stability of ARL3. CONCLUSION: Our study confirms that the ARL3 missense variant p.(Tyr90Cys) causes retinitis pigmentosa. In 2016, Strom et al. reported the exact same variant in a mother and two children with RP, labelled ?RP83 in the OMIM database. Now the questionmark can be removed, and ARL3 should be added to the list of genes that may cause non-syndromic dominant retinitis pigmentosa.


Subject(s)
ADP-Ribosylation Factors/genetics , Mutation, Missense , Retinitis Pigmentosa/genetics , Adolescent , Electroretinography , Genes, Dominant , Genetic Association Studies , Humans , Middle Aged , Pedigree , Phenotype , Retina/physiopathology , Retinitis Pigmentosa/physiopathology , Retrospective Studies , Tomography, Optical Coherence , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL