Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 840
Filter
1.
Oncol Rep ; 52(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963043

ABSTRACT

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that there appeared to be two instances of overlapping data panels comparing between the cell migration and invasion assay data shown in Figs. 4 and 6 on p. 143 and 145, respectively, such that data which were intended to represent the results from differently performed experiments had apparently been derived from the same original sources. In addition, the authors themselves realized that incorrect western blotting data for Snail protein in Fig. 10A on p. 147 had been included in the figure.  The authors were able to re­examine their original data files, and realized that the affected data panels in these figures had inadvertently been incorporated into them incorrectly. The revised versions of Figs. 4, 6, and 10, featuring the correct data for the 'NC / Control' panels in Fig. 4B and C and the 'siRNA2 / ATP 12 h' panels in Fig. 4A and B, a replacement data panel for the 'siRNA1 / Control' experiment in Fig. 6, and the correct western blotting data for Snail protein in Fig. 10A (together with a revised histogram for the MCF7 cell line relating to Fig. 10A) are shown on the next three pages. The authors wish to emphasize that the errors made in compiling these figures did not affect the overall conclusions reported in the paper, and they are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this corrigendum. All the authors agree to the publication of this corrigendum, and also apologize to the readership for any inconvenience caused. [Oncology Reports 39: 138­150, 2018; DOI: 10.3892/or.2017.6081].

2.
iScience ; 27(6): 110045, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947529

ABSTRACT

Aging is closely associated with inflammation, which affects renal function reserve (RFR) in the kidneys. This study aims to investigate the impact of reduced RFR reduction on kidney aging and the influence of renal inflammation and RFR reduction on this process. Natural aging rats and those subjected to unilateral nephrectomy (UNX), 1/6 nephrectomy (1/6NX), and unilateral ureteral obstruction (UUO) were observed at 6, 12, 18, and 21 months. Our findings suggest that RFR reduction and renal inflammation can accelerate kidney aging, and inflammation contributes more. Metabolomics analysis revealed alterations in amino acid metabolism contribute to RFR decline. Furthermore, experiments in vitro confirmed the involvement of pentose phosphate pathway (PPP) in promoting aging though inflammation. Our research provides novel insights into for the mechanism of kidney aging and provides indirect support for clinical treatment decisions, such as addressing kidney inflammation, stones, or tumors that may necessitate partial or complete nephrectomy.

3.
Transl Cancer Res ; 13(5): 2518-2534, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38881923

ABSTRACT

Background: Elevated expression of SLC7A11, in conjunction with glucose deprivation, has revealed disulfidptosis as an emerging cell death modality. However, the prevalence of disulfidptosis across tumor cell lines, irrespective of SLC7A11 levels, remains uncertain. Additionally, deletion of the ribophorin I (RPN1) gene imparts resistance to disulfidptosis, yet the precise mechanism linking RPN1 to disulfidptosis remains elusive. The aim of this study is to determine the mechanism of RPN1-induced disulfidptosis and to determine the possibility of RPN1 as a pan-cancer marker. Methods: We hypothesized the widespread occurrence of disulfidptosis in various tumor cells, and proposed that RPN1-mediated disulfidptosis may be executed through cell skeleton breakdown. Experimental validation was conducted via flow cytometry, immunofluorescence, and western blot techniques. Furthermore, given RPN1's status as an emerging cell death marker, we utilized bioinformatics to analyze its expression in tumor tissues, clinical relevance, mechanisms within the tumor microenvironment, and potential for immunotherapy. Results: Conducting experiments on breast cancer (MDA-MB-231) and lung cancer (A549) cell lines under glucose-starved conditions, we found that RPN1 primarily induces cell skeleton breakdown to facilitate disulfidptosis. RPN1 demonstrated robust messenger RNA (mRNA) expression across 16 solid tumors, validated by data from 12 tumor types in the Gene Expression Omnibus (GEO). Across 12 cancer types, RPN1 exhibited significant diagnostic potential, particularly excelling in accuracy for glioblastoma (GBM). Elevated RPN1 expression in tumor tissues was found to correlate with improved overall survival (OS) in certain cancers [diffuse large B-cell lymphoma (DLBC) and thymoma (THYM)] but poorer prognosis in others [adrenocortical carcinoma (ACC), kidney chromophobe (KICH), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD)]. RPN1 is enriched in immune-related pathways and correlates with immune scores in tumor tissues. In urothelial carcinoma (UCC), RPN1 demonstrates potential in predicting the efficacy of anti-programmed cell death ligand 1 (PD-L1) immune therapy. Conclusions: This study underscores RPN1's role in facilitating disulfidptosis, its broad relevance as a pan-cancer biomarker, and its association with the efficacy of anti-PD-L1 immune therapy.

4.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893339

ABSTRACT

Six ionone glycosides (1-3 and 5-7), including three new ones, named capitsesqsides A-C (1-3), together with an eudesmane sesquiterpenoid glycoside (4) and three known triterpenoid saponins (8-10) were isolated from Rhododendron capitatum. The structures of these compounds were determined by extensive spectroscopic techniques (MS, UV, 1D-NMR, and 2D-NMR) and comparison with data reported in the literature. The absolute configurations were determined by comparison of the experimental and theoretically calculated ECD curves and LC-MS analyses after acid hydrolysis and derivatization. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. Molecular docking demonstrated that 2 has a favorable affinity for NLRP3 and iNOS.


Subject(s)
Glycosides , Rhododendron , Rhododendron/chemistry , Mice , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , RAW 264.7 Cells , Animals , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Norisoprenoids/chemistry , Norisoprenoids/pharmacology , Norisoprenoids/isolation & purification , Molecular Structure , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
5.
World J Otorhinolaryngol Head Neck Surg ; 10(2): 113-120, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855290

ABSTRACT

Objective: This cross-sectional study aimed to determine the epidemiology of olfactory and gustatory dysfunctions related to COVID-19 in China. Methods: This study was conducted by 45 tertiary Grade-A hospitals in China. Online and offline questionnaire data were obtained from patients infected with COVID-19 between December 28, 2022, and February 21, 2023. The collected information included basic demographics, medical history, smoking and drinking history, vaccination history, changes in olfactory and gustatory functions before and after infection, and other postinfection symptoms, as well as the duration and improvement status of olfactory and gustatory disorders. Results: Complete questionnaires were obtained from 35,566 subjects. The overall incidence of olfactory and taste dysfunction was 67.75%. Being female or being a cigarette smoker increased the likelihood of developing olfactory and taste dysfunction. Having received four doses of the vaccine or having good oral health or being a alcohol drinker decreased the risk of such dysfunction. Before infection, the average olfactory and taste VAS scores were 8.41 and 8.51, respectively; after infection, they decreased to 3.69 and 4.29 and recovered to 5.83 and 6.55 by the time of the survey. The median duration of dysosmia and dysgeusia was 15 and 12 days, respectively, with 0.5% of patients having symptoms lasting for more than 28 days. The overall self-reported improvement rate was 59.16%. Recovery was higher in males, never smokers, those who received two or three vaccine doses, and those that had never experienced dental health issues, or chronic accompanying symptoms. Conclusions: The incidence of dysosmia and dysgeusia following infection with the SARS-CoV-2 virus is high in China. Incidence and prognosis are influenced by several factors, including sex, SARS-CoV-2 vaccination, history of head-facial trauma, nasal and oral health status, smoking and drinking history, and the persistence of accompanying symptoms.

7.
Biochem Biophys Res Commun ; 724: 150233, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865814

ABSTRACT

Cryptochromes (CRYs) are blue light (BL) photoreceptors to regulate a variety of physiological processes including DNA double-strand break (DSB) repair. SUPPRESSOR OF GAMMA RADIATION 1 (SOG1) acts as the central transcription factor of DNA damage response (DDR) to induce the transcription of downstream genes, including DSB repair-related genes BRCA1 and RAD51. Whether CRYs regulate DSB repair by directly modulating SOG1 is unknown. Here, we demonstrate that CRYs physically interact with SOG1. Disruption of CRYs and SOG1 leads to increased sensitivity to DSBs and reduced DSB repair-related genes' expression under BL. Moreover, we found that CRY1 enhances SOG1's transcription activation of DSB repair-related gene BRCA1. These results suggest that the mechanism by which CRYs promote DSB repair involves positive regulation of SOG1's transcription of its target genes, which is likely mediated by CRYs-SOG1 interaction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cryptochromes , DNA Breaks, Double-Stranded , DNA Repair , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Cryptochromes/metabolism , Cryptochromes/genetics , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics
8.
J Ethnopharmacol ; 333: 118424, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844252

ABSTRACT

ETHNIC PHARMACOLOGICAL RELEVANCE: Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD), which is a public health problem with a significant economic burden. Serious adverse effects, such as hypotension, hyperkalemia, and genitourinary infections, as well as increasing adverse cardiovascular events, limit the clinical application of available drugs. Plenty of randomized controlled trials(RCTs), meta-analysis(MAs) and systematic reviews(SRs) have demonstrated that many therapies that have been used for a long time in medical practice including Chinese patent medicines(CPMs), Chinese medicine prescriptions, and extracts are effective in alleviating DKD, but the mechanisms by which they work are still unknown. Currently, targeting inflammation is a central strategy in DKD drug development. In addition, many experimental studies have identified many Chinese medicine prescriptions, medicinal herbs and extracts that have the potential to alleviate DKD. And part of the mechanisms by which they work have been uncovered. AIM OF THIS REVIEW: This review aims to summarize therapies that have been proven effective by RCTs, MAs and SRs, including CPMs, Chinese medicine prescriptions, and extracts. This review also focuses on the efficiency and potential targets of Chinese medicine prescriptions, medicinal herbs and extracts discovered in experimental studies in improving immune inflammation in DKD. METHODS: We searched for relevant scientific articles in the following databases: PubMed, Google Scholar, and Web of Science. We summarized effective CPMs, Chinese medicine prescriptions, and extracts from RCTs, MAs and SRs. We elaborated the signaling pathways and molecular mechanisms by which Chinese medicine prescriptions, medicinal herbs and extracts alleviate inflammation in DKD according to different experimental studies. RESULTS: After overviewing plenty of RCTs with the low hierarchy of evidence and MAs and SRs with strong heterogeneity, we still found that CPMs, Chinese medicine prescriptions, and extracts exerted promising protective effects against DKD. However, there is insufficient evidence to prove the safety of Chinese medicines. As for experimental studies, Experiments in vitro and in vivo jointly demonstrated the efficacy of Chinese medicines(Chinese medicine prescriptions, medicinal herbs and extracts) in DKD treatment. Chinese medicines were able to regulate signaling pathways to improve inflammation in DKD, such as toll-like receptors, NLRP3 inflammasome, Nrf2 signaling pathway, AMPK signaling pathway, MAPK signaling pathway, JAK-STAT, and AGE/RAGE. CONCLUSION: Chinese medicines (Chinese medicine prescriptions, medicinal herbs and extracts) can improve inflammation in DKD. For drugs that are effective in RCTs, the underlying bioactive components or extracts should be identified and isolated. Attention should be given to their safety and pharmacokinetics. Acute, subacute, and subchronic toxicity studies should be designed to determine the magnitude and tolerability of side effects in humans or animals. For drugs that have been proven effective in experimental studies, RCTs should be designed to provide reliable evidence for clinical translation. In a word, Chinese medicines targeting immune inflammation in DKD are a promising direction.

9.
Cancer Epidemiol Biomarkers Prev ; 33(7): 904-911, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38773687

ABSTRACT

BACKGROUND: The growing use of primary human papillomavirus (HPV) cervical cancer screening requires determining appropriate screening intervals to avoid overtreatment of transient disease. This study examined the long-term risk of cervical precancer after HPV screening to inform screening interval recommendations. METHODS: This longitudinal cohort study (British Columbia, Canada, 2008 to 2022) recruited women and individuals with a cervix who received 1 to 2 negative HPV screens (HPV1 cohort, N = 5,546; HPV2 cohort, N = 6,624) during a randomized trial and women and individuals with a cervix with 1 to 2 normal cytology results (BCS1 cohort, N = 782,297; BCS2 cohort, N = 673,778) extracted from the provincial screening registry. All participants were followed through the registry for 14 years. Long-term risk of cervical precancer or worse [cervical intraepithelial neoplasia grade 2 or worse (CIN2+)] was compared between HPV and cytology cohorts. RESULTS: Cumulative risks of CIN2+ were 3.2/1,000 [95% confidence interval (CI), 1.6-4.7] in HPV1 and 2.7/1,000 (95% CI, 1.2-4.2) in HPV2 after 8 years. This was comparable with the risk in the cytology cohorts after 3 years [BCS1: 3.3/1,000 (95% CI, 3.1-3.4); BCS2: 2.5/1,000 (95% CI, 2.4-2.6)]. The cumulative risk of CIN2+ after 10 years was low in the HPV cohorts [HPV1: 4.7/1,000 (95% CI, 2.6-6.7); HPV2: 3.9 (95% CI, 1.1-6.6)]. CONCLUSIONS: Risk of CIN2+ 8 years after a negative screen in the HPV cohorts was comparable with risk after 3 years in the cytology cohorts (the benchmark for acceptable risk). IMPACT: These findings suggest that primary HPV screening intervals could be extended beyond the current 5-year recommendation, potentially reducing barriers to screening.


Subject(s)
Early Detection of Cancer , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Longitudinal Studies , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/epidemiology , Papillomavirus Infections/virology , Papillomavirus Infections/diagnosis , Papillomavirus Infections/epidemiology , Adult , Early Detection of Cancer/methods , Middle Aged , Uterine Cervical Dysplasia/virology , Uterine Cervical Dysplasia/pathology , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/epidemiology , British Columbia/epidemiology , Vaginal Smears/methods , Precancerous Conditions/virology , Precancerous Conditions/pathology , Precancerous Conditions/diagnosis , Precancerous Conditions/epidemiology , Papillomaviridae/isolation & purification , Cytology
10.
Environ Pollut ; 356: 124118, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761880

ABSTRACT

Rivers represent one of the main conduits for the delivery of plastics to the sea, while also functioning as reservoirs for plastic retention. In tropical regions, rivers are exposed to both high levels of plastic pollution and invasion of water hyacinths. This aquatic plant forms dense patches at the river surface that drift due to winds and currents. Recent work suggests that water hyacinths play a crucial role in influencing plastic transport, by efficiently trapping the majority of surface plastic within their patches. However, a comprehensive understanding of the interaction between water hyacinths and plastics is still lacking. We hypothesize that the properties relevant to plastic transport change due to their trapping in water hyacinth patches. In particular, the length scale, defined as the characteristic size of the transported material, is a key property in understanding how materials move within rivers. Here, we show that water hyacinth patches trap on average 54%-77% of all observed surface plastics at the measurement site (Saigon river, Vietnam). Both temporally and spatially, we found that plastic and water hyacinth presence co-occur. The formation of plastic-plant aggregates carries significant implications for both clean-up and monitoring purposes, as these aggregates can be detected from space and need to be jointly removed. In addition, the length scale of trapped plastics (∼4.0 m) was found to be forty times larger than that of open water plastics (∼0.1 m). The implications of this increased length scale for plastic transport dynamics are yet to be fully understood, calling for further investigation into travel distances and trajectories. The effects of plastic trapping likely extend to other key properties of plastic-plant aggregates, such as effective buoyancy and mass. Given the prevalence of plant invasion and plastic pollution in rivers worldwide, this research offers valuable insights into the complex environmental challenges faced by numerous rivers.

11.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718571

ABSTRACT

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Light , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Hypocotyl/growth & development , Hypocotyl/metabolism , Hypocotyl/radiation effects , Hypocotyl/genetics , Cryptochromes/metabolism , Cryptochromes/genetics , DNA Repair/radiation effects , Transcription Factors/metabolism , Transcription Factors/genetics , Morphogenesis/radiation effects , Blue Light
12.
Cell Commun Signal ; 22(1): 291, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802835

ABSTRACT

A promising new therapy option for acute kidney injury (AKI) is mesenchymal stem cells (MSCs). However, there are several limitations to the use of MSCs, such as low rates of survival, limited homing capacity, and unclear differentiation. In search of better therapeutic strategies, we explored all-trans retinoic acid (ATRA) pretreatment of MSCs to observe whether it could improve the therapeutic efficacy of AKI. We established a renal ischemia/reperfusion injury model and treated mice with ATRA-pretreated MSCs via tail vein injection. We found that AKI mice treated with ATRA-MSCs significantly improved renal function compared with DMSO-MSCs treatment. RNA sequencing screened that hyaluronic acid (HA) production from MSCs promoted by ATRA. Further validation by chromatin immunoprecipitation experiments verified that retinoic acid receptor RARα/RXRγ was a potential transcription factor for hyaluronic acid synthase 2. Additionally, an in vitro hypoxia/reoxygenation model was established using human proximal tubular epithelial cells (HK-2). After co-culturing HK-2 cells with ATRA-pretreated MSCs, we observed that HA binds to cluster determinant 44 (CD44) and activates the PI3K/AKT pathway, which enhances the anti-inflammatory, anti-apoptotic, and proliferative repair effects of MSCs in AKI. Inhibition of the HA/CD44 axis effectively reverses the renal repair effect of ATRA-pretreated MSCs. Taken together, our study suggests that ATRA pretreatment promotes HA production by MSCs and activates the PI3K/AKT pathway in renal tubular epithelial cells, thereby enhancing the efficacy of MSCs against AKI.


Subject(s)
Acute Kidney Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Tretinoin , Acute Kidney Injury/therapy , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Tretinoin/pharmacology , Tretinoin/therapeutic use , Humans , Mice , Male , Mice, Inbred C57BL , Hyaluronic Acid/pharmacology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Reperfusion Injury/therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Disease Models, Animal , Apoptosis/drug effects
13.
Apoptosis ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796567

ABSTRACT

Podocyte apoptosis or loss is the pivotal pathological characteristic of diabetic kidney disease (DKD). Insulin-like growth factor-binding protein 2 (IGFBP2) have a proinflammatory and proapoptotic effect on diseases. Previous studies have shown that serum IGFBP2 level significantly increased in DKD patients, but the precise mechanisms remain unclear. Here, we found that IGFBP2 levels obviously increased under a diabetic state and high glucose stimuli. Deficiency of IGFBP2 attenuated the urine protein, renal pathological injury and glomeruli hypertrophy of DKD mice induced by STZ, and knockdown or deletion of IGFBP2 alleviated podocytes apoptosis induced by high concentration of glucose or in DKD mouse. Furthermore, IGFBP2 facilitated apoptosis, which was characterized by increase in inflammation and oxidative stress, by binding with integrin α5 (ITGA5) of podocytes, and then activating the phosphorylation of focal adhesion kinase (FAK)-mediated mitochondrial injury, including membrane potential decreasing, ROS production increasing. Moreover, ITGA5 knockdown or FAK inhibition attenuated the podocyte apoptosis caused by high glucose or IGFBP2 overexpression. Taken together, these findings unveiled the insight mechanism that IGFBP2 increased podocyte apoptosis by mitochondrial injury via ITGA5/FAK phosphorylation pathway in DKD progression, and provided the potential therapeutic strategies for diabetic kidney disease.

14.
Chem Biodivers ; : e202400937, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682724

ABSTRACT

Three new indole alkaloids, named talatensindoids A-C (1-3), together with two known biogenetically related indole alkaloids tryptamine (4) and L-tryptophan (5) were isolated from the Talaromyces assiutensis JTY2 based on the guidance of OSMAC approach. The structures of these indole alkaloids were determined by comprehensive spectroscopic analyses. The absolute configuration of 3 was confirmed by X-ray crystallographic analysis. Compound 1 represent the rare example of a chlorine-substituted indole alkaloid from natural products. The inhibitory activity of compounds 1-5 against two phytopathogenic fungi and three phytopathogenic bacteria was evaluated. Compound 1 exhibited broad spectrum antibacterial activities.

15.
Plant Cell Rep ; 43(5): 121, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635077

ABSTRACT

KEY MESSAGE: FKF1 dimerization is crucial for proper FT levels to fine-tune flowering time. Attenuating FKF1 homodimerization increased CO abundance by enhancing its COP1 binding, thereby accelerating flowering under long days. In Arabidopsis (Arabidopsis thaliana), the blue-light photoreceptor FKF1 (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1) plays a key role in inducing the expression of FLOWERING LOCUS T (FT), encoding the main florigenic signal in plants, in the late afternoon under long-day conditions (LDs) by forming dimers with FT regulators. Although structural studies have unveiled a variant of FKF1 (FKF1 I160R) that disrupts homodimer formation in vitro, the mechanism by which disrupted FKF1 homodimer formation regulates flowering time remains elusive. In this study, we determined that the attenuation of FKF1 homodimer formation enhances FT expression in the evening by promoting the increased stability of CONSTANS (CO), a primary activator of FT, in the afternoon, thereby contributing to early flowering. In contrast to wild-type FKF1, introducing the FKF1 I160R variant into the fkf1 mutant led to increased FT expression under LDs. In addition, the FKF1 I160R variant exhibited diminished dimerization with FKF1, while its interaction with GIGANTEA (GI), a modulator of FKF1 function, was enhanced under LDs. Furthermore, the FKF1 I160R variant increased the level of CO in the afternoon under LDs by enhancing its binding to COP1, an E3 ubiquitin ligase responsible for CO degradation. These findings suggest that the regulation of FKF1 homodimerization and heterodimerization allows plants to finely adjust FT expression levels around dusk by modulating its interactions with GI and COP1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Dimerization , Blue Light , Protein Domains , Reproduction
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648903

ABSTRACT

Acute kidney injury (AKI) can cause distal cardiac dysfunction; however, the underlying mechanism is unknown. Oxidative stress is proved prominent in AKI-induced cardiac dysfunction, and a possible bridge role of oxidative-stress products in cardio-renal interaction has been reported. Therefore, this study aimed to investigate the critical role of circulating reactive oxygen species (ROS) in mediating cardiac dysfunction after bilateral renal ischemia-reperfusion injury (IRI). We observed the diastolic dysfunction in the mice following renal IRI, accompanied by reduced ATP levels, oxidative stress, and branched-chain amino acids (BCAA) accumulation in the heart. Notably, ROS levels showed a sequential increase in the kidneys, circulation, and heart. Treatment with tempol, an ROS scavenger, significantly restored cardiac diastolic function in the renal IRI mice, corroborating the bridge role of circulating ROS. Accumulating evidence has identified oxidative stress as upstream of Mst1/Hippo in cardiac injury, which could regulate the expression of downstream genes related to mitochondrial quality control, leading to lower ATP, higher ROS and metabolic disorder. To verify this, we examined the activation of the Mst1/Hippo pathway in the heart of renal IRI mice, which was alleviated by tempol treatment as well. In vitro, analysis revealed that Mst1-knockdown cardiomyocytes could be activated by hydrogen peroxide (H2O2). Analysis of Mst1-overexpression cardiomyocytes confirmed the critical role of the Mst1/Hippo pathway in oxidative stress and BCAA dysmetabolism. Therefore, our results indicated that circulating ROS following renal IRI activates the Mst1/Hippo pathway of myocardium, leading to cardiac oxidative stress and diastolic dysfunction. This finding provides new insights for the clinical exploration of improved treatment options for cardiorenal syndrome.


Subject(s)
Acute Kidney Injury , Oxidative Stress , Protein Serine-Threonine Kinases , Reactive Oxygen Species , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Reactive Oxygen Species/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Hippo Signaling Pathway , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/complications , Spin Labels , Diastole , Cyclic N-Oxides
17.
Huan Jing Ke Xue ; 45(5): 2707-2714, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629534

ABSTRACT

Biofilms attached to submerged macrophytes play an important role in improving the water quality of the water environment supplemented with reclaimed water. In order to explore the effects of reclaimed water quality and submerged macrophyte species on the characteristics of an epiphytic bacterial community, different types of submerged macrophytes were selected as research objects in this study. 16S rRNA high-throughput sequencing technology was used on the epiphytic bacteria and the surrounding environmental samples to analyze the bacterial community structure and functional genes. The results showed that approximately 20%-35% of the nitrogen and phosphorus nutrients were absorbed and utilized in the water environment supplemented with reclaimed water. However, the COD, turbidity, and chroma of the downstream water were significantly increased. The bacterial community of the biofilms attached to submerged macrophytes was significantly different from that in the surrounding environment (soil, sediment, and water body) and in the activated sludge that was treated by reclaimed water. In terms of bacterial community diversity, the richness and diversity were significantly lower than those of soil and sediment but higher than those of plankton bacteria in water. In terms of bacterial community composition, dominant genera and corresponding abundances were also different from those of other samples. The main dominant bacterial genera were Sphingomonas, Aeromonas, Pseudomonas, and Acinetobacter, accounting for 7%-40%, respectively. Both macrophyte species and the quality of reclaimed water (BOD5, TN, NH4+-N, and TP) could affect the bacterial community. However, the effect of water quality of the bacterial community was greater than that of macrophytes species. Additionally, the quality of reclaimed water also affected the abundance of functional genes in the bacterial community, and the relative abundance of nitrogen and phosphorus cycling functional genes was higher in areas with higher nitrogen and phosphorus concentrations.


Subject(s)
Bacteria , Nitrogen , RNA, Ribosomal, 16S , Bacteria/genetics , Phosphorus , Soil
18.
Fish Shellfish Immunol ; 149: 109564, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631439

ABSTRACT

Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.


Subject(s)
Carps , Fish Diseases , Interferon Type I , Interleukin-6 , Reoviridae Infections , Reoviridae , STAT3 Transcription Factor , Signal Transduction , Virus Replication , Animals , Fish Diseases/immunology , Fish Diseases/virology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-6/metabolism , Reoviridae Infections/immunology , Reoviridae Infections/veterinary , Reoviridae/physiology , Carps/immunology , Carps/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/immunology , Signal Transduction/immunology , Interferon Type I/immunology , Interferon Type I/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Immunity, Innate/genetics
19.
Prog Mol Biol Transl Sci ; 204: 97-107, 2024.
Article in English | MEDLINE | ID: mdl-38458745

ABSTRACT

ß-thalassemia is an autosomal recessive disease, caused by one or more mutations in the ß-globin gene that reduces or abolishes ß-globin chain synthesis causing an imbalance in the ratio of α- and ß-globin chain. Therefore, the ability to target mutations will provide a good result in the treatment of ß-thalassemia. RNA therapeutics represents a promising class of drugs inclusive antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and APTAMER have investigated in clinical trials for treatment of human diseases as ß-thalassemia; Especially, ASO therapeutics can completely treat ß-thalassemia patients by the way of making ASO infiltrating through erythrocyte progenitor cells, migrating to the nucleus and hybridizing with abnormal splicing sites to suppress an abnormal splicing pattern of ß-globin pre-mRNA. As a result, the exactly splicing process is restored to increase the expression of ß-globin which increases the amount of mature hemoglobin of red blood cells of ß-thalassemia patients. Furthermore, current study demonstrates that RNA-based therapeutics get lots of good results for ß-thalassemia patients. Then, this chapter focuses on current advances of RNA-based therapeutics and addresses current challenges with their development and application for treatment of ß-thalassemia patients.


Subject(s)
beta-Thalassemia , Humans , beta-Thalassemia/genetics , beta-Thalassemia/therapy , RNA/metabolism , RNA, Messenger/genetics , RNA Splicing/genetics , beta-Globins/genetics , beta-Globins/metabolism
20.
J Occup Rehabil ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546953

ABSTRACT

PURPOSE: This project aimed to examine the existing evidence on work disability or musculoskeletal disorders (MSDs) among teleworkers. METHOD: A scoping review was conducted in eight bibliographic databases (MEDLINE, CINAHL, Embase, PsycINFO, ABI/Inform Global, EBM Reviews, Web of Science, Dissertations & Theses Global) from inception to June 2022. RESULTS: Out of 9192 records identified, a total of 79 selected articles representing 77 studies were retained. Most studies were published after 2019, aligning with the COVID-19 pandemic's telework surge. Among the included papers, 51 addressed MSDs among teleworkers, 17 were on work disability, and 11 addressed both concepts. The studies were predominantly cross-sectional. Some trends are emerging, although study results are contradictory. Several papers reported increased musculoskeletal discomfort among teleworkers. Factors associated with MSDs among teleworkers include poor workstation setup, extended workdays, sedentary lifestyle, excessive devices use, and psychological factors. Regarding work disability, studies found that telework is associated with reduced absenteeism but increased presenteeism, with employees more likely to work while unwell from home than when on-site. Mixed results were found regarding teleworkers' work ability and functioning. CONCLUSION: This paper provides an overview of the literature on work disability and MSDs among teleworkers. It identifies literature gaps, underlining the need for ergonomic improvements, long-term impact studies, a better conceptualization of presenteeism in the context of telework, and tailored interventions to enhance the telework experience.

SELECTION OF CITATIONS
SEARCH DETAIL
...