Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.629
Filter
1.
Front Pharmacol ; 15: 1373006, 2024.
Article in English | MEDLINE | ID: mdl-38983921

ABSTRACT

Background: Remimazolam, a new ultrashort-acting benzodiazepine, is becoming increasingly applied in general anesthesia. This study is designed to investigate the effect of remimazolam-based total intravenous anesthesia and sevoflurane-based inhalation anesthesia on emergence delirium in pediatric tonsillectomy and adenoidectomy. Methods and analysis: This is a monocentric, prospective, randomized, double-blind clinical trial. A total of 90 pediatric patients will be randomized to receive remimazolam-based total intravenous anesthesia (remimazolam group, n = 45) or sevoflurane-based inhalation anesthesia (sevoflurane group, n = 45). The primary outcome will be the incidence of emergence delirium, which will be evaluated using the Pediatric Anesthesia Emergence Delirium (PAED) scale. The secondary outcomes include the extubation time, recovery time, behavior change using the post-hospitalization behavior questionnaire for ambulatory surgery (PHBQ-AS), and adverse events. Ethics and dissemination: This study has been approved by the Institutional Review Board (IRB) of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (2023-K-262-02). Clinical trial registration: ClinicalTrials.gov, identifier NCT06214117.

2.
Sci Rep ; 14(1): 16049, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992133

ABSTRACT

The study aimed to evaluate the prevalence, risk factors, and clinical outcomes of pulmonary embolism in patients diagnosed with sepsis with and without shock. The National Inpatient Sample was used to identify adults with sepsis with and without shock between 2017 and 2019. The prevalence of acute pulmonary embolism and the association of acute pulmonary embolism with in-hospital mortality, hospital length of stay for survivors, and overall costs of hospitalization were evaluated. Multivariable logistic and linear regression analyses, adjusted for various parameters, were used to explore these associations. Of the estimated 5,019,369 sepsis hospitalizations, 1.2% of patients with sepsis without shock and 2.3% of patients with septic shock developed pulmonary embolism. The odds ratio for in-hospital mortality was 1.94 (95% confidence interval (CI) 1.85-2.03, p < 0.001). The coefficient for hospital length of stay was 3.24 (95% CI 3.03-3.45, p < 0.001). The coefficient for total costs was 46,513 (95% CI 43,079-49,947, p < 0.001). The prevalence of pulmonary embolism in patients diagnosed with sepsis with and without shock was 1.2 and 2.3%, respectively. Acute pulmonary embolism was associated with higher in-hospital mortality, longer hospital length of stay for survivors, and higher overall costs of hospitalization.


Subject(s)
Hospital Mortality , Length of Stay , Pulmonary Embolism , Sepsis , Shock, Septic , Humans , Pulmonary Embolism/mortality , Pulmonary Embolism/epidemiology , Pulmonary Embolism/complications , Pulmonary Embolism/economics , Male , Female , Shock, Septic/mortality , Shock, Septic/epidemiology , Shock, Septic/complications , Aged , Prevalence , Risk Factors , Middle Aged , Sepsis/complications , Sepsis/epidemiology , Sepsis/mortality , Inpatients/statistics & numerical data , Adult , Aged, 80 and over , Hospitalization , United States/epidemiology
3.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000467

ABSTRACT

The hemolymph-testis barrier (HTB) is a reproduction barrier in Crustacea, guaranteeing the safe and smooth process of spermatogenesis, which is similar to the blood-testis barrier (BTB) in mammals. The MAPK signaling pathway plays an essential role in spermatogenesis and maintenance of the BTB. However, only a few studies have focused on the influence of MAPK on crustacean reproduction. In the present study, we knocked down and inhibited MAPK in Eriocheir sinensis. Increased defects in spermatogenesis were observed, concurrently with a damaged HTB. Further research revealed that es-MMP14 functions downstream of ERK and p38 MAPK and degrades junctional proteins (Pinin and ZO-1); es-CREB functions in the ERK cascade as a transcription factor of ZO-1. In addition, when es-MMP14 and es-CREB were deleted, the defects in HTB and spermatogenesis aligned with abnormalities in the MAPK. However, JNK impacts the integrity of the HTB by changing the distribution of intercellular junctions. In summary, the MAPK signaling pathway maintains HTB integrity and spermatogenesis through es-MMP14 and es-CREB, which provides insights into the evolution of gene function during barrier evolution.


Subject(s)
Brachyura , Cyclic AMP Response Element-Binding Protein , MAP Kinase Signaling System , Spermatogenesis , Testis , p38 Mitogen-Activated Protein Kinases , Animals , Male , Brachyura/metabolism , Brachyura/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Testis/metabolism , Signal Transduction , Blood-Testis Barrier/metabolism
4.
Biotechnol Bioeng ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978393

ABSTRACT

ß-Alanine is the only ß-amino acid in nature and one of the most important three-carbon chemicals. This work was aimed to construct a non-inducible ß-alanine producer with enhanced metabolic flux towards ß-alanine biosynthesis in Escherichia coli. First of all, the assembled E. coli endogenous promoters and 5'-untranslated regions (PUTR) were screened to finely regulate the combinatorial expression of genes panDBS and aspBCG for an optimal flux match between two key pathways. Subsequently, additional copies of key genes (panDBS K104S and ppc) were chromosomally introduced into the host A1. On these bases, dynamical regulation of the gene thrA was performed to reduce the carbon flux directed in the competitive pathway. Finally, the ß-alanine titer reached 10.25 g/L by strain A14-R15, 361.7% higher than that of the original strain. Under fed-batch fermentation in a 5-L fermentor, a titer of 57.13 g/L ß-alanine was achieved at 80 h. This is the highest titer of ß-alanine production ever reported using non-inducible engineered E. coli. This metabolic modification strategy for optimal carbon flux distribution developed in this work could also be used for the production of various metabolic products.

5.
Anal Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979688

ABSTRACT

Cell death is a fundamental biological process with different modes including apoptosis and necrosis. In contrast to programmed apoptosis, necrosis was previously considered disordered and passive, but it is now being realized to be under regulation by certain biological pathways. However, the intracellular dynamics that coordinates with cellular structure changes during necrosis remains unknown, limiting our understanding of the principles of necrosis. Here, we characterized the spatiotemporal intracellular diffusion dynamics in cells undergoing necrosis, using three-dimensional single-particle tracking of quantum dots. We found temporally increased diffusion rates in necrotic cells and spatially enhanced diffusion heterogeneity in the cell periphery, which could be attributed to the reduced molecular crowding resulting from cell swelling and peripheral blebbing, respectively. Moreover, the three-dimensional intracellular diffusion transits from strong anisotropy to nearly isotropy, suggesting a remodeling of the cytoarchitecture that relieves the axial constraint on intracellular diffusion during necrosis. Our results reveal the remarkable alterations of intracellular diffusion dynamics and biophysical properties in necrosis, providing insight into the well-organized nonequilibrium necrotic cell death from a biophysical perspective.

6.
Heliyon ; 10(11): e32462, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961962

ABSTRACT

Diagnosis of intracranial tuberculoma remains a challenge due to its rarity, non-specific clinical presentation, and radiological findings. Herein, we describe a case of intracranial tuberculomas in a male diabetic patient who presented headache and vomiting on admission. Neuroimaging findings indicated multiple ring contrast-enhanced lesions with extensive perilesional edema. However, a cerebrospinal fluid (CSF) examination was normal. When a biopsy of brain lesions was performed, pathological characteristics of tuberculosis were absent and acid-fast staining was negative. A tuberculosis diagnosis was subsequently obtained from an Xpert MTB/RIF Ultra assay of formalin-fixed paraffin-embedded brain tissue. The patient was treated with an optimized anti-tuberculosis regimen which included high-dose intravenous administration of rifampicin and isoniazid, and oral administration of linezolid. The patient recovered well and exhibited marked clinical improvement. This case report demonstrates that when CSF analysis does not indicate the presence of intracranial tuberculomas, analysis of formalin-fixed paraffin-embedded brain tissue specimens with the Xpert MTB/RIF Ultra assay may be able to confirm a diagnosis. Furthermore, a high dose of rifampicin and isoniazid plus linezolid may improve patient outcome.

7.
Front Mol Biosci ; 11: 1375360, 2024.
Article in English | MEDLINE | ID: mdl-38962282

ABSTRACT

Background: High altitude de-acclimatization (HADA) is gradually becoming a public health concern as millions of individuals of different occupations migrate to high-altitude areas for work due to economic growth in plateau areas. HADA affects people who return to lower elevations after exposure to high altitudes. It causes significant physiological and functional changes that can negatively impact health and even endanger life. However, uncertainties persist about the detailed mechanisms underlying HADA. Methods: We established a population cohort of individuals with HADA and assessed variations in metabolite composition. Plasm samples of four groups, including subjects staying at plain (P) and high altitude (H) as well as subjects suffering from HADA syndrome with almost no reaction (r3) and mild-to-moderate reaction (R3) after returning to plain from high altitude, were collected and analyzed by Liquid Chromatography-Mass Spectrometry metabolomic. Multivariate statistical analyses were used to explore significant differences and potential clinical prospect of metabolites. Result: Although significantly different on current HADAS diagnostic symptom score, there were no differences in 17 usual clinical indices between r3 and R3. Further multivariate analyses showed isolated clustering distribution of the metabolites among the four groups, suggesting significant differences in their metabolic characteristics. Through K-means clustering analysis, we identified 235 metabolites that exhibited patterns of abundance change consistent with phenotype of HADA syndrome. Pathway enrichment analysis indicated a high influence of polyunsaturated fatty acids under high-altitude conditions. We compared the metabolites between R3 and r3 and found 107 metabolites with differential abundance involved in lipid metabolism and oxidation, suggesting their potential role in the regulation of oxidative stress homeostasis. Among them, four metabolites might play a key role in the occurrence of HADA, including 11-beta-hydroxyandrosterone-3-glucuronide, 5-methoxyindoleacetate, 9,10-epoxyoctadecenoic acid, and PysoPC (20:5). Conclusion: We observed the dynamic variation in the metabolic process of HADA. Levels of four metabolites, which might be provoking HADA mediated through lipid metabolism and oxidation, were expected to be explore prospective indices for HADA. Additionally, metabolomics was more efficient in identifying environmental risk factors than clinical examination when dramatic metabolic disturbances underlying the difference in symptoms were detected, providing new insights into the molecular mechanisms of HADAS.

8.
World J Psychiatry ; 14(6): 894-903, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38984344

ABSTRACT

BACKGROUND: Postoperative pain management and cognitive function preservation are crucial for patients undergoing thoracoscopic surgery for lung cancer (LC). This is achieved using either a thoracic paravertebral block (TPVB) or sufentanil (SUF)-based multimodal analgesia. However, the efficacy and impact of their combined use on postoperative pain and postoperative cognitive dysfunction (POCD) remain unclear. AIM: To explore the analgesic effect and the influence on POCD of TPVB combined with SUF-based multimodal analgesia in patients undergoing thoracoscopic radical resection for LC to help optimize postoperative pain management and improve patient outcomes. METHODS: This retrospective analysis included 107 patients undergoing thoracoscopic radical resection for LC at The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital between May 2021 and January 2023. Patients receiving SUF-based multimodal analgesia (n = 50) and patients receiving TPVB + SUF-based multimodal analgesia (n = 57) were assigned to the control group and TPVB group, respectively. We compared the Ramsay Sedation Scale and visual analog scale (VAS) scores at rest and with cough between the two groups at 2, 12, and 24 h after surgery. Serum levels of epinephrine (E), angio-tensin II (Ang II), norepinephrine (NE), superoxide dismutase (SOD), vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1), tumor necrosis factor-α (TNF-α), and S-100 calcium-binding protein ß (S-100ß) were measured before and 24 h after surgery. The Mini-Mental State Examination (MMSE) was administered 1 day before surgery and at 3 and 5 days after surgery, and the occurrence of POCD was monitored for 5 days after surgery. Adverse reactions were also recorded. RESULTS: There were no significant time point, between-group, and interaction effects in Ramsay sedation scores between the two groups (P > 0.05). Significantly, there were notable time point effects, between-group differences, and interaction effects observed in VAS scores both at rest and with cough (P < 0.05). The VAS scores at rest and with cough at 12 and 24 h after surgery were lower than those at 2 h after surgery and gradually decreased as postoperative time increased (P < 0.05). The TPVB group had lower VAS scores than the control group at 2, 12, and 24 h after surgery (P < 0.05). The MMSE scores at postoperative days 1 and 3 were markedly higher in the TPVB group than in the control group (P < 0.05). The incidence of POCD was significantly lower in the TPVB group than in the control group within 5 days after surgery (P < 0.05). Both groups had elevated serum E, Ang II, and NE and decreased serum SOD levels at 24 h after surgery compared with the preoperative levels, with better indices in the TPVB group (P < 0.05). Marked elevations in serum levels of VEGF, TGF-ß1, TNF-α, and S-100ß were observed in both groups at 24 h after surgery, with lower levels in the TPVB group than in the control group (P < 0.05). CONCLUSION: TPVB combined with SUF-based multimodal analgesia further relieves pain in patients undergoing thoracoscopic radical surgery for LC, enhances analgesic effects, reduces postoperative stress response, and inhibits postoperative increases in serum VEGF, TGF-ß1, TNF-α, and S-100ß levels. This scheme also reduced POCD and had a high safety profile.

9.
Cell Rep ; 43(7): 114477, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38985676

ABSTRACT

Despite the success of programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition in tumor therapy, many patients do not benefit. This failure may be attributed to the intrinsic functions of PD-L1. We perform a genome-wide CRISPR synthetic lethality screen to systematically explore the intrinsic functions of PD-L1 in head and neck squamous cell carcinoma (HNSCC) cells, identifying ferroptosis-related genes as essential for the viability of PD-L1-deficient cells. Genetic and pharmacological induction of ferroptosis accelerates cell death in PD-L1 knockout cells, which are also more susceptible to immunogenic ferroptosis. Mechanistically, nuclear PD-L1 transcriptionally activates SOD2 to maintain redox homeostasis. Lower reactive oxygen species (ROS) and ferroptosis are observed in patients with HNSCC who have higher PD-L1 expression. Our study illustrates that PD-L1 confers ferroptosis resistance in HNSCC cells by activating the SOD2-mediated antioxidant pathway, suggesting that targeting the intrinsic functions of PD-L1 could enhance therapeutic efficacy.

10.
Nat Commun ; 15(1): 5731, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977708

ABSTRACT

Neuropilin-1 (NRP1), a co-receptor for various cytokines, including TGF-ß, has been identified as a potential therapeutic target for fibrosis. However, its role and mechanism in renal fibrosis remains elusive. Here, we show that NRP1 is upregulated in distal tubular (DT) cells of patients with transplant renal insufficiency and mice with renal ischemia-reperfusion (I-R) injury. Knockout of Nrp1 reduces multiple endpoints of renal injury and fibrosis. We find that Nrp1 facilitates the binding of TNF-α to its receptor in DT cells after renal injury. This signaling results in a downregulation of lysine crotonylation of the metabolic enzyme Cox4i1, decreases cellular energetics and exacerbation of renal injury. Furthermore, by single-cell RNA-sequencing we find that Nrp1-positive DT cells secrete collagen and communicate with myofibroblasts, exacerbating acute kidney injury (AKI)-induced renal fibrosis by activating Smad3. Dual genetic deletion of Nrp1 and Tgfbr1 in DT cells better improves renal injury and fibrosis than either single knockout. Together, these results reveal that targeting of NRP1 represents a promising strategy for the treatment of AKI and subsequent chronic kidney disease.


Subject(s)
Acute Kidney Injury , Fibrosis , Mice, Knockout , Neuropilin-1 , Receptor, Transforming Growth Factor-beta Type I , Reperfusion Injury , Smad3 Protein , Neuropilin-1/metabolism , Neuropilin-1/genetics , Animals , Humans , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Male , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction , Mice, Inbred C57BL , Kidney Tubules/pathology , Kidney Tubules/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , Collagen/metabolism
11.
Sci China Life Sci ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38902450

ABSTRACT

Energy status is linked to the production of reactive oxygen species (ROS) in macrophages, which is elevated in obesity. However, it is unclear how ROS production is upregulated in macrophages in response to energy overload for mediating the development of obesity. Here, we show that the Rab-GTPase activating protein (RabGAP) TBC1D1, a substrate of the energy sensor AMP-activated protein kinase (AMPK), is a critical regulator of macrophage ROS production and consequent adipose inflammation for obesity development. TBC1D1 deletion decreases, whereas an energy overload-mimetic non-phosphorylatable TBC1D1S231A mutation increases, ROS production and M1-like polarization in macrophages. Mechanistically, TBC1D1 and its downstream target Rab8a form an energy-responsive complex with NOX2 for ROS generation. Transplantation of TBC1D1S231A bone marrow aggravates diet-induced obesity whereas treatment with an ultra-stable TtSOD for removal of ROS selectively in macrophages alleviates both TBC1D1S231A mutation- and diet-induced obesity. Our findings therefore have implications for drug discovery to combat obesity.

12.
Science ; 384(6701): eadk5382, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870290

ABSTRACT

Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.


Subject(s)
ATP-Dependent Proteases , Artemisinins , Cholesterol Side-Chain Cleavage Enzyme , Mitochondrial Proteins , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Rats , Androgens/metabolism , Artemisinins/therapeutic use , Artemisinins/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Disease Models, Animal , Hyperandrogenism/drug therapy , Hyperandrogenism/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Ovary/drug effects , Ovary/metabolism , Polycystic Ovary Syndrome/drug therapy , Proteolysis , Mice, Inbred C57BL , Young Adult , Adult , Rats, Sprague-Dawley , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism
13.
Kidney Res Clin Pract ; 43(3): 263-273, 2024 May.
Article in English | MEDLINE | ID: mdl-38863384

ABSTRACT

With an increasing aging population, the mean age of patients with end-stage kidney disease (ESKD) is globally increasing. However, the current clinical status of elderly patients undergoing hemodialysis (HD) is rarely reported in Korea. The current study analyzed the clinical features and trends of older patients undergoing HD from the Korean Renal Data System (KORDS) database. The patients were divided into three groups according to age: <65 years (the young group), n = 50,591 (35.9%); 65-74 years (the younger-old group), n = 37,525 (26.6%); and ≥75 years (the older-old group), n = 52,856 (37.5%). The proportion of older-old group undergoing HD significantly increased in incidence and decreased in prevalence from 2013 to 2022. The median levels of hemoglobin, serum creatinine, albumin, calcium, phosphorus, and intact parathyroid hormone significantly decreased in the older-old group. The proportions of arteriovenous fistula creation and left forearm placement showed decreased trends with age. Although the utilization of low surface area dialyzers increased with age, the dialysis adequacy, including urea reduction ratio and Kt/V was within acceptable range in the older-old group on HD. Over the past 20 years, the mortality rate in the older-old group has increased, with cardiovascular diseases decreasing and infectious diseases increasing. The incidence of elderly patients undergoing HD has increased over time, but the high mortality of the older-old group needs to be solved. Therefore, it is imperative to develop holistic strategies based on age and individual needs for patients with ESKD.

14.
Sci Rep ; 14(1): 13939, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886444

ABSTRACT

Feed efficiency (FE) is essential for pig production, has been reported to be partially explained by gut microbiota. Despite an extensive body of research literature to this topic, studies regarding the regulation of feed efficiency by gut microbiota remain fragmented and mostly confined to disorganized or semi-structured unrestricted texts. Meanwhile, structured databases for microbiota analysis are available, yet they often lack a comprehensive understanding of the associated biological processes. Therefore, we have devised an approach to construct a comprehensive knowledge graph by combining unstructured textual intelligence with structured database information and applied it to investigate the relationship between pig gut microbes and FE. Firstly, we created the pgmReading knowledge base and the domain ontology of pig gut microbiota by annotating, extracting, and integrating semantic information from 157 scientific publications. Secondly, we created the pgmPubtator by utilizing PubTator to expand the semantic information related to microbiota. Thirdly, we created the pgmDatabase by mapping and combining the ADDAGMA, gutMGene, and KEGG databases based on the ontology. These three knowledge bases were integrated to form the Pig Gut Microbial Knowledge Graph (PGMKG). Additionally, we created five biological query cases to validate the performance of PGMKG. These cases not only allow us to identify microbes with the most significant impact on FE but also provide insights into the metabolites produced by these microbes and the associated metabolic pathways. This study introduces PGMKG, mapping key microbes in pig feed efficiency and guiding microbiota-targeted optimization.


Subject(s)
Animal Feed , Gastrointestinal Microbiome , Animals , Swine , Knowledge Bases , Databases, Factual
15.
Animals (Basel) ; 14(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891682

ABSTRACT

Crytosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are important diarrheal pathogens with a global distribution that threatens the health of humans and animals. Despite cattle being potential transmission hosts of these protozoans, the associated risks to public health have been neglected. In the present study, a total of 1155 cattle fecal samples were collected from 13 administrative regions of Heilongjiang Province. The prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi were 5.5% (64/1155; 95% CI: 4.2-6.9), 3.8% (44/1155; 95% CI: 2.7-4.9), and 6.5% (75/1155; 95% CI: 5.1-7.9), respectively. Among these positive fecal samples, five Cryptosporidium species (C. andersoni, C. bovis, C. ryanae, C. parvum, and C. occultus), two G. duodenalis assemblages (E and A), and eight E. bieneusi genotypes (BEB4, BEB6, BEB8, J, I, CHS7, CHS8, and COS-I) were identified. Phylogenetic analysis showed that all eight genotypes of E. bieneusi identified in the present study belonged to group 2. It is worth noting that some species/genotypes of these intestinal protozoans are zoonotic, suggesting a risk of zoonotic disease transmission in endemic areas. The findings expanded our understanding of the genetic composition and zoonotic potential of Cryptosporidium spp., G. duodenalis, and E. bieneusi in cattle in Heilongjiang Province.

16.
Micromachines (Basel) ; 15(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930766

ABSTRACT

This study introduces a novel approach for fabricating vertically stacked mini-LED arrays, integrating InGaN yellow and blue epitaxial layers with a stress buffer layer to enhance optoelectronic characteristics and structural stability. This method significantly simplifies the LED design by reducing the need for RGB configurations, thus lowering costs and system complexity. Employing vertical stacking integration technology, the design achieves high-density, efficient white light production suitable for multifunctional applications, including automotive lighting and outdoor signage. Experimental results demonstrate the exceptional performance of the stacked yellow and blue mini-LEDs in terms of luminous efficiency, wavelength precision, and thermal stability. The study also explores the performance of these LEDs under varying temperature conditions and their long-term reliability, indicating that InGaN-based yellow LEDs offer superior performance over traditional AlGaInP yellow LEDs, particularly in high-temperature environments. This technology promises significant advancements in the design and application of lighting systems, with potential implications for both automotive and general illumination markets.

17.
J Agric Food Chem ; 72(26): 14620-14629, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885170

ABSTRACT

Milk fat content is a critical indicator of milk quality. Exploring the key regulatory genes involved in milk fat synthesis is essential for enhancing milk fat content. STF-62247 (STF), a thiazolamide compound, has the potential to bind with ALG5 and upregulate lipid droplets in fat synthesis. However, the effect of STF on the process of milk fat synthesis and whether it acts through ALG5 remains unknown. In this study, the impact of ALG5 on milk fat synthesis and its underlying mechanism were investigated using bovine mammary epithelial cells (BMECs) and mouse models through real-time PCR, western blotting, Oil Red O staining, and triglyceride analysis. Experimental findings revealed a positive correlation between STF and ALG5 with the ability to synthesize milk fat. Silencing ALG5 led to decreased expression of FASN, SREBP1, and PPARγ in BMECs, as well as reduced phosphorylation levels in the PI3K/AKT/mTOR signaling pathway. Moreover, the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway were restored when ALG5 silencing was followed by the addition of STF. These results suggest that STF regulates fatty acid synthesis in BMECs by affecting the PI3K/AKT/mTOR signaling pathway through ALG5. ALG5 is possibly a new factor in milk fat synthesis.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , Milk , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Milk/chemistry , Milk/metabolism , Mice , Cattle , Female , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Fats/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Fatty Acids/metabolism , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Triglycerides/metabolism
18.
Org Lett ; 26(23): 4857-4862, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38838191

ABSTRACT

The efficient construction of π-conjugated polycyclic heteroarenes represents a significant task in the field of functional materials. A one-step oxidative tandem cyclization of aromatic acids with (benzo)thiophenes was developed to access planar sulfur-containing polycyclic heteroarenes. This protocol undergoes intermolecular cross-dehydrogenative coupling followed by intramolecular Friedel-Crafts acylation and provides a facile pathway to planar polycyclic compounds from inexpensive reactants. The synthesized heteroarenes serving as lipid-droplet-targeted probes exhibit outstanding performance with favorable biocompatibility and photostability.

19.
BMC Anesthesiol ; 24(1): 200, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840092

ABSTRACT

BACKGROUND: The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS: We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified using ELISA. RESULTS: We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1ß levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1ß, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS: Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.


Subject(s)
Anesthetics, Inhalation , Animals, Newborn , Isoflurane , K Cl- Cotransporters , Solute Carrier Family 12, Member 2 , Symporters , Animals , Isoflurane/pharmacology , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/adverse effects , Rats , Mice , Rats, Sprague-Dawley , Male , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Female , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism
20.
Angew Chem Int Ed Engl ; : e202408551, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858167

ABSTRACT

Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (∆n(Zeiss) = 0.216 vs ∆n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ∆n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.

SELECTION OF CITATIONS
SEARCH DETAIL
...