Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Front Immunol ; 15: 1399960, 2024.
Article En | MEDLINE | ID: mdl-38873606

The VH6-1 class of antibodies includes some of the broadest and most potent antibodies that neutralize influenza A virus. Here, we elicit and isolate anti-idiotype antibodies against germline versions of VH6-1 antibodies, use these to sort human leukocytes, and isolate a new VH6-1-class member, antibody L5A7, which potently neutralized diverse group 1 and group 2 influenza A strains. While its heavy chain derived from the canonical IGHV6-1 heavy chain gene used by the class, L5A7 utilized a light chain gene, IGKV1-9, which had not been previously observed in other VH6-1-class antibodies. The cryo-EM structure of L5A7 in complex with Indonesia 2005 hemagglutinin revealed a nearly identical binding mode to other VH6-1-class members. The structure of L5A7 bound to the isolating anti-idiotype antibody, 28H6E11, revealed a shared surface for binding anti-idiotype and hemagglutinin that included two critical L5A7 regions: an FG motif in the third heavy chain-complementary determining region (CDR H3) and the CDR L1 loop. Surprisingly, the chemistries of L5A7 interactions with hemagglutinin and with anti-idiotype were substantially different. Overall, we demonstrate anti-idiotype-based isolation of a broad and potent influenza A virus-neutralizing antibody, revealing that anti-idiotypic selection of antibodies can involve features other than chemical mimicry of the target antigen.


Antibodies, Anti-Idiotypic , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Humans , Influenza A virus/immunology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/isolation & purification , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza, Human/immunology , Influenza, Human/virology , Animals , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/chemistry
2.
Sci Transl Med ; 16(728): eadd5960, 2024 01 03.
Article En | MEDLINE | ID: mdl-38170789

Durable humoral immunity is mediated by long-lived plasma cells (LLPCs) that reside in the bone marrow. It remains unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein vaccination is able to elicit and maintain LLPCs. Here, we describe a sensitive method to identify and isolate antigen-specific LLPCs by tethering antibodies secreted by these cells onto the cell surface. Using this method, we found that two doses of adjuvanted SARS-CoV-2 spike protein vaccination are able to induce spike protein-specific LLPC reservoirs enriched for receptor binding domain specificities in the bone marrow of nonhuman primates that are detectable for several months after vaccination. Immunoglobulin gene sequencing confirmed that several of these LLPCs were clones of memory B cells elicited 2 weeks after boost that had undergone further somatic hypermutation. Many of the antibodies secreted by these LLPCs also exhibited improved neutralization and cross-reactivity compared with earlier time points. These findings establish our method as a means to sensitively and reliably detect rare antigen-specific LLPCs and demonstrate that adjuvanted SARS-CoV-2 spike protein vaccination establishes spike protein-specific LLPC reservoirs.


COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Plasma Cells/metabolism , Antibodies, Viral , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Adjuvants, Immunologic , Primates , Antibodies, Neutralizing
...