Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 308
Filter
1.
Sci Rep ; 14(1): 15324, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961143

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetes, which may threaten the quality of life and shorten life expectancy in the diabetic population. However, the molecular mechanisms underlying the diabetes cardiomyopathy are not fully elucidated. We analyzed two datasets from Gene Expression Omnibus (GEO). Differentially expressed and weighted gene correlation network analysis (WGCNA) was used to screen key genes and molecules. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were constructed to identify hub genes. The diagnostic value of the hub gene was evaluated using the receiver operating characteristic (ROC). Quantitative real-time PCR (RT-qPCR) was used to validate the hub genes. A total of 13 differentially co-expressed modules were selected by WGCNA and differential expression analysis. KEGG and GO analysis showed these DEGs were mainly enriched in lipid metabolism and myocardial hypertrophy pathway, cytomembrane, and mitochondrion. As a result, six genes were identified as hub genes. Finally, five genes (Pdk4, Lipe, Serpine1, Igf1r, and Bcl2l1) were found significantly changed in both the validation dataset and experimental mice with DCM. In conclusion, the present study identified five genes that may help provide novel targets for diagnosing and treating DCM.


Subject(s)
Computational Biology , Diabetic Cardiomyopathies , Gene Regulatory Networks , Protein Interaction Maps , Diabetic Cardiomyopathies/genetics , Computational Biology/methods , Animals , Mice , Protein Interaction Maps/genetics , Humans , Plasminogen Activator Inhibitor 1/genetics , Gene Expression Profiling , Receptor, IGF Type 1/genetics , Gene Ontology , Gene Expression Regulation
2.
Sci Rep ; 14(1): 15627, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972909

ABSTRACT

Apparently, understanding airway management status may help to reduce risk and improve clinical practice. Given these facts, our team conducted a second survey on the current status of airway management for mainland China following our 2016 national airway survey. The national survey was conducted from November 7 to November 28, 2022. An electronic survey was sent to the New Youth Anesthesia Forum, where Chinese anesthesiologists completed the questionnaire via WeChat. A total of 3783 respondents completed the survey, with a response rate of 72.14%. So far, in 2022, 34.84% of anesthesiologists canceled or delayed surgery at least once due to difficult airway. For the anticipated difficult airway management, 66.11% of physicians would choose awake intubation under sedation and topical anesthesia, while the percentage seeking help has decreased compared to the 2016 survey. When encountering an emergency, 74.20% of respondents prefer to use the needle cricothyrotomy, albeit less than a quarter have actually performed it. Anesthesiologists with difficult airway training experience reached 72.96%, with a significant difference in participation between participants in Tier 3 hospitals and those in other levels of hospitals (P < 0.001). The videolaryngoscope, laryngeal mask, and flexible intubation scope were equipped at 97.18%, 95.96%, and 62.89%, respectively. Additionally, the percentage of brain damage or death caused by difficult airways was significantly decreased. The study may be the best reference for understanding the current status of airway management in China, revealing the current advancements and deficiencies. The future focus of airway management remains on training and education.


Subject(s)
Airway Management , Humans , China , Airway Management/methods , Airway Management/statistics & numerical data , Surveys and Questionnaires , Intubation, Intratracheal/statistics & numerical data , Intubation, Intratracheal/methods , Male , Anesthesiologists , Female , Adult , Laryngeal Masks
3.
Front Endocrinol (Lausanne) ; 15: 1385167, 2024.
Article in English | MEDLINE | ID: mdl-38948526

ABSTRACT

Background: Thyroid nodules, increasingly prevalent globally, pose a risk of malignant transformation. Early screening is crucial for management, yet current models focus mainly on ultrasound features. This study explores machine learning for screening using demographic and biochemical indicators. Methods: Analyzing data from 6,102 individuals and 61 variables, we identified 17 key variables to construct models using six machine learning classifiers: Logistic Regression, SVM, Multilayer Perceptron, Random Forest, XGBoost, and LightGBM. Performance was evaluated by accuracy, precision, recall, F1 score, specificity, kappa statistic, and AUC, with internal and external validations assessing generalizability. Shapley values determined feature importance, and Decision Curve Analysis evaluated clinical benefits. Results: Random Forest showed the highest internal validation accuracy (78.3%) and AUC (89.1%). LightGBM demonstrated robust external validation performance. Key factors included age, gender, and urinary iodine levels, with significant clinical benefits at various thresholds. Clinical benefits were observed across various risk thresholds, particularly in ensemble models. Conclusion: Machine learning, particularly ensemble methods, accurately predicts thyroid nodule presence using demographic and biochemical data. This cost-effective strategy offers valuable insights for thyroid health management, aiding in early detection and potentially improving clinical outcomes. These findings enhance our understanding of the key predictors of thyroid nodules and underscore the potential of machine learning in public health applications for early disease screening and prevention.


Subject(s)
Machine Learning , Thyroid Nodule , Thyroid Nodule/diagnosis , Thyroid Nodule/epidemiology , Thyroid Nodule/diagnostic imaging , Humans , Female , Male , China/epidemiology , Cross-Sectional Studies , Middle Aged , Adult , Early Detection of Cancer/methods , Aged , Mass Screening/methods , Ultrasonography/methods
4.
Int J Chron Obstruct Pulmon Dis ; 19: 1457-1469, 2024.
Article in English | MEDLINE | ID: mdl-38948909

ABSTRACT

Purpose: This study conducted a pharmacovigilance analysis based on the FDA Adverse Event Reporting System (FAERS) database to compare the infection risk of inhaled or nasal Beclomethasone, Fluticasone, Budesonide, Ciclesonide, Mometasone, and Triamcinolone Acetonide. Methods: We used proportional imbalance analysis to evaluate the correlation between ICS /INCs and infection events. The data was extracted from the FAERS database from April 2015 to September 2023. Further analysis was conducted on the clinical characteristics, site of infection, and pathogenic bacteria of ICS and INCs infection adverse events (AEs). We used bubble charts to display their top 5 infection adverse events. Results: We analyzed 21,837 reports of infection AEs related to ICS and INCs, with an average age of 62.12 years. Among them, 61.14% of infection reports were related to females. One-third of infections reported to occur in the lower respiratory tract with Fluticasone, Budesonide, Ciclesonidec, and Mometasone; over 40% of infections reported by Triamcinolone Acetonide were eye infections; the rate of oral infections caused by Beclomethasone were 7.39%. The reported rates of fungal and viral infections caused by beclomethasone were 21.15% and 19.2%, respectively. The mycobacterial infections caused by Budesonide and Ciclesonidec account for 3.29% and 2.03%, respectively. Bubble plots showed that the ICS group had more fungal infections, oral infections, pneumonia, tracheitis, etc. The INCs group had more eye symptoms, rhinitis, sinusitis, nasopharyngitis, etc. Conclusion: Women who use ICS and INCs are more prone to infection events. Compared to Budesonide, Fluticasone seemed to have a higher risk of pneumonia and oral candidiasis. Mometasone might lead to more upper respiratory tract infections. The risk of oral infection was higher with Beclomethasone. Beclomethasone causes more fungal and viral infections, while Ciclesonide and Budesonide are more susceptible to mycobacterial infections.


Subject(s)
Administration, Intranasal , Adverse Drug Reaction Reporting Systems , Databases, Factual , Pharmacovigilance , Humans , Female , Middle Aged , Male , Administration, Inhalation , United States/epidemiology , Risk Factors , Aged , Risk Assessment , Adult , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/adverse effects , United States Food and Drug Administration , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/diagnosis
5.
Ann Surg Open ; 5(2): e429, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38911666

ABSTRACT

Objective: To determine whether certain patients are vulnerable to errant triage decisions immediately after major surgery and whether there are unique sociodemographic phenotypes within overtriaged and undertriaged cohorts. Background: In a fair system, overtriage of low-acuity patients to intensive care units (ICUs) and undertriage of high-acuity patients to general wards would affect all sociodemographic subgroups equally. Methods: This multicenter, longitudinal cohort study of hospital admissions immediately after major surgery compared hospital mortality and value of care (risk-adjusted mortality/total costs) across 4 cohorts: overtriage (N = 660), risk-matched overtriage controls admitted to general wards (N = 3077), undertriage (N = 2335), and risk-matched undertriage controls admitted to ICUs (N = 4774). K-means clustering identified sociodemographic phenotypes within overtriage and undertriage cohorts. Results: Compared with controls, overtriaged admissions had a predominance of male patients (56.2% vs 43.1%, P < 0.001) and commercial insurance (6.4% vs 2.5%, P < 0.001); undertriaged admissions had a predominance of Black patients (28.4% vs 24.4%, P < 0.001) and greater socioeconomic deprivation. Overtriage was associated with increased total direct costs [$16.2K ($11.4K-$23.5K) vs $14.1K ($9.1K-$20.7K), P < 0.001] and low value of care; undertriage was associated with increased hospital mortality (1.5% vs 0.7%, P = 0.002) and hospice care (2.2% vs 0.6%, P < 0.001) and low value of care. Unique sociodemographic phenotypes within both overtriage and undertriage cohorts had similar outcomes and value of care, suggesting that triage decisions, rather than patient characteristics, drive outcomes and value of care. Conclusions: Postoperative triage decisions should ensure equality across sociodemographic groups by anchoring triage decisions to objective patient acuity assessments, circumventing cognitive shortcuts and mitigating bias.

6.
J Biol Eng ; 18(1): 36, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845032

ABSTRACT

Exosomes are nanovesicles with multiple components used in several applications. Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. MSC-derived exosomes (MSC-Exos) have been shown to mediate tissue regeneration in various diseases, including neurological, autoimmune, and inflammatory diseases, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells in the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. This review summarizes the MSC-Exos-mediated tissue regeneration in various diseases, including neurological, cardiovascular, liver, kidney, articular cartilage, and oral tissue applications. In addition, we discuss the challenges and prospects of MSC-Exos in tissue regeneration.

8.
Int J Ophthalmol ; 17(6): 1094-1101, 2024.
Article in English | MEDLINE | ID: mdl-38895688

ABSTRACT

AIM: To investigate botulinum toxin A (BTXA) efficacy on small-angle (≤25Δ) acute acquired concomitant esotropia (AACE) in early-stage patients. METHODS: The electronic medical record data of AACE patients during March 2019 and June 2023 were collected in this retrospective and hospital-based cohort study. A total of 72 small-angle AACE patients received BTXA extraocular muscle injection. Patients were grouped by onset-to-treatment time (Group A: ≤6mo, Group B: >6mo). Deviation of esotropia, eye alignment and stereopsis were analyzed at the period of pre/post-injection (1wk, 1, 3, and 6mo). Orthophoria rate at 6mo (horizontal deviation <10Δ and binocular single vision) were considered as outcome index. RESULTS: There were no significant baseline differences (P>0.05) between two groups except onset-to-treatment time (2mo vs 11mo, P<0.001). Higher orthophoria rates were in Group A at last follow-up (94.74% vs 73.53%, P=0.013). Post-BTXA deviations of two groups at 1mo showed no difference (P>0.05); while in 3 and 6mo Group A was significantly smaller than group B (all P<0.001). No statistically significant differences were observed among all post-BTXA deviations of near and distance in Group A. In Group B, deviation at 3mo (near: 2Δ vs 0, P<0.001; distance: 4Δ vs 0, P<0.001) and 6mo (near: 6Δ vs 0, P<0.001; distance: 6Δ vs 0, P<0.001) was significant increased compared to deviation at 1wk after treatment. Group A showed better stereopsis recovery in last follow-up compared to Group B (80″ vs 200″, P=0.002). Both groups obtained improved stereopsis after treatment (Group A: 80″ vs 300″, P<0.001; Group B: 200″ vs 300″, P=0.037). CONCLUSION: BTXA is effective for AACE with small deviation (≤25Δ) in early stage. Delayed treatment (>6mo) may reduce BTXA efficacy. Early BTXA intervention benefits long-term eye alignment and stereopsis recovery.

9.
Cell Death Dis ; 15(6): 389, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830896

ABSTRACT

Apolipoprotein O (APOO) plays a critical intracellular role in regulating lipid metabolism. Here, we investigated the roles of APOO in metabolism and atherogenesis in mice. Hepatic APOO expression was increased in response to hyperlipidemia but was inhibited after simvastatin treatment. Using a novel APOO global knockout (Apoo-/-) model, it was found that APOO depletion aggravated diet-induced obesity and elevated plasma cholesterol levels. Upon crossing with low-density lipoprotein receptor (LDLR) and apolipoprotein E (APOE) knockout hyperlipidemic mouse models, Apoo-/- Apoe-/- and Apoo-/- Ldlr-/- mice exhibited elevated plasma cholesterol levels, with more severe atherosclerotic lesions than littermate controls. This indicated the effects of APOO on cholesterol metabolism independent of LDLR and APOE. Moreover, APOO deficiency reduced cholesterol excretion through bile and feces while decreasing phospholipid unsaturation by inhibiting NRF2 and CYB5R3. Restoration of CYB5R3 expression in vivo by adeno-associated virus (AAV) injection reversed the reduced degree of phospholipid unsaturation while decreasing blood cholesterol levels. This represents the first in vivo experimental validation of the role of APOO in plasma cholesterol metabolism independent of LDLR and elucidates a previously unrecognized cholesterol metabolism pathway involving NRF2/CYB5R3. APOO may be a metabolic regulator of total-body cholesterol homeostasis and a target for atherosclerosis management. Apolipoprotein O (APOO) regulates plasma cholesterol levels and atherosclerosis through a pathway involving CYB5R3 that regulates biliary and fecal cholesterol excretion, independently of the LDL receptor. In addition, down-regulation of APOO may lead to impaired mitochondrial function, which in turn aggravates diet-induced obesity and fat accumulation.


Subject(s)
Cholesterol , NF-E2-Related Factor 2 , Receptors, LDL , Animals , Receptors, LDL/metabolism , Cholesterol/metabolism , NF-E2-Related Factor 2/metabolism , Mice , Mice, Knockout , Mice, Inbred C57BL , Lipid Metabolism , Male , Atherosclerosis/metabolism , Apolipoproteins/metabolism , Apolipoproteins/genetics , Humans , Liver/metabolism , Apolipoproteins E/metabolism , Hyperlipidemias/metabolism
10.
Article in English | MEDLINE | ID: mdl-38922587

ABSTRACT

In vitro investigations have established metformin's capacity to downregulate PCSK9 expression, suggesting a potential beneficial effect on atherogenic lipoprotein particles when combined with metformin therapy. Our objective was to assess whether metformin could mitigate statin-induced adverse effects on PCSK9, thereby improving lipid profiles in patients with coronary artery disease (CAD) but without diabetes. Employing an open-label, placebo-controlled, randomized trial, we randomized patients with CAD but without diabetes into CLA (Cholesterol-Lowering Agents alone: atorvastatin+/-ezetimibe, n=38) and Met+CLA groups (metformin plus CLA, n=33) at a 1:1 ratio. The primary endpoint was the therapeutic impact of one-month metformin combination treatment on LDL-C and PCSK9 levels. Baseline LDL-C and PCSK9 levels were 76.18 mg·dL-1 and 80.54 ng·mL-1, respectively. After one month, metformin significantly reduced LDL-C (-20.81%, P<0.001), enabling 72% of patients to attain guideline-recommended LDL-C goals. Noteworthy reductions in PCSK9 levels (-15.03%, P<0.001) were observed. Moreover, Met+CLA markedly reduced LDL particle number more than CLA alone (-10.65% vs 1.45%, P=0.009), primarily due to diminished small-dense LDL particle count. Mechanistically, our study demonstrated metformin's inhibition of statin-induced PCSK9 expression in human hepatocellular cells. In summary, a one-month metformin combination regimen reduced LDL-C levels in patients with CAD but without diabetes by inhibiting PCSK9 expression.

12.
Exp Cell Res ; 440(1): 114137, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38897410

ABSTRACT

Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.


Subject(s)
Glaucoma , Mitochondria , NAD , Trabecular Meshwork , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Trabecular Meshwork/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Glaucoma/metabolism , Glaucoma/pathology , Glaucoma/drug therapy , NAD/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Intraocular Pressure/drug effects , Cell Survival/drug effects , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Cell Line , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Dexamethasone/pharmacology , Cells, Cultured
14.
Phytomedicine ; 129: 155694, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733904

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is associated with intestinal macrophage infiltration due to disruption of the mucosal barrier and bacterial invasion. Therefore, it is crucial to identify therapeutic agents capable of attenuating the macrophage-induced inflammatory response to preserve mucosal homeostasis and immune tolerance. The modified Zhenwu decoction (CDD-2103) is a novel herbal formulation developed based on the principles of Traditional Chinese medicine. To date, there are no clinically approved herbal formulations for UC with a well-known mechanism of action on macrophages. PURPOSE: The objective of this study was to systematically investigate the inhibitory effect of the active fraction of CDD-2103 in a mouse model of chronic colitis and delineate the mechanisms underlying its inhibitory action. METHODS: CDD-2103 was extracted into four fractions using organic solvents with increasing polarity. A chronic 49-day dextran sulfate sodium (DSS)-induced colitis mice model, closely resembling human clinical conditions, was used to examine the effect of CDD-2103 on chronic colitis. To confirm the effect of CDD-2103 on macrophages in this chronic colitis model, adoptive macrophage transfer and CCL2 supplementation were conducted. The mechanisms of action of CDD-2103 were further elucidated utilizing bone marrow-derived macrophages (BMDMs). Transcriptome analysis was conducted to gain insights into the underlying mechanism of action of CDD-2103 in BMDMs. RESULTS: Our in vitro and in vivo findings demonstrated that the ethanol-enriched fraction of CDD-2103 exhibited significant anti-inflammatory effects, leading to the suppression of colitis severity. This effect was associated with diminished accumulation of colonic macrophages in the lamina propria of CDD-2103-intervened colitis mice. Specifically, CDD-2103 inhibited CCR2/L2-mediated proinflammatory macrophage infiltration into the colon without affecting macrophage proliferation. Mechanistically, CDD-2103 inhibited Fyn expression-mediated p38 MAPK activation and subsequently suppressed CCR2 expression in BMDMs. CONCLUSIONS: Collectively, our study supports the potential use of CDD-2103 to limit macrophage infiltration, thereby reducing inflammation during UC treatment. CDD-2103 and the components in the ethanolic fraction are promising candidates for the development of novel drugs for UC management. Additionally, our study underscores Fyn-mediated CCR2 expression as a potential therapeutic target for the management of UC.


Subject(s)
Dextran Sulfate , Disease Models, Animal , Drugs, Chinese Herbal , Macrophages , Mice, Inbred C57BL , Receptors, CCR2 , p38 Mitogen-Activated Protein Kinases , Animals , Male , Mice , Chronic Disease , Colitis/drug therapy , Colitis/chemically induced , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/pharmacology , Macrophages/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Receptors, CCR2/metabolism , Signal Transduction/drug effects
15.
Nanoscale ; 16(21): 10448-10457, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38752569

ABSTRACT

With continuous advances in medical technology, non-invasive embolization has emerged as a minimally invasive treatment, offering new possibilities in cancer therapy. Fluorescent labeling can achieve visualization of therapeutic agents in vivo, providing technical support for precise treatment. This paper introduces a novel in situ non-invasive embolization composite material, Au NPs@(mPEG-PLGTs), created through the electrostatic combination of L-cysteine-modified gold nanoparticles (Au NPs) and methoxy polyethylene glycol amine-poly[(L-glutamic acid)-(L-tyrosine)] (mPEG-PLGTs). Experiments were undertaken to confirm the biocompatibility, degradability, stability and performance of this tumor therapy. The research results demonstrated a reduction in tumor size as early as the fifth day after the initial injection, with a significant 90% shrinkage in tumor volume observed after a 20-day treatment cycle, successfully inhibiting tumor growth and exhibiting excellent anti-tumor effects. Utilizing near-infrared in vivo imaging, Au NPs@(mPEG-PLGTs) displayed effective fluorescence tracking within the bodies of nude BALB-c mice. This study provides a novel direction for the further development and innovation of in situ non-invasive embolization in the field, highlighting its potential for rapid, significant therapeutic effects with minimal invasiveness and enhanced safety.


Subject(s)
Gold , Metal Nanoparticles , Mice, Inbred BALB C , Mice, Nude , Polyethylene Glycols , Gold/chemistry , Animals , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Polyethylene Glycols/chemistry , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Embolization, Therapeutic , Polyglutamic Acid/chemistry , Polyglutamic Acid/analogs & derivatives
16.
Front Immunol ; 15: 1346587, 2024.
Article in English | MEDLINE | ID: mdl-38690261

ABSTRACT

Extracellular vesicles (EVs) are important cell-to-cell communication mediators. This paper focuses on the regulatory role of tumor-derived EVs on macrophages. It aims to investigate the causes of tumor progression and therapeutic directions. Tumor-derived EVs can cause macrophages to shift to M1 or M2 phenotypes. This indicates they can alter the M1/M2 cell ratio and have pro-tumor and anti-inflammatory effects. This paper discusses several key points: first, the factors that stimulate macrophage polarization and the cytokines released as a result; second, an overview of EVs and the methods used to isolate them; third, how EVs from various cancer cell sources, such as hepatocellular carcinoma, colorectal carcinoma, lung carcinoma, breast carcinoma, and glioblastoma cell sources carcinoma, promote tumor development by inducing M2 polarization in macrophages; and fourth, how EVs from breast carcinoma, pancreatic carcinoma, lungs carcinoma, and glioblastoma cell sources carcinoma also contribute to tumor development by promoting M2 polarization in macrophages. Modified or sourced EVs from breast, pancreatic, and colorectal cancer can repolarize M2 to M1 macrophages. This exhibits anti-tumor activities and offers novel approaches for tumor treatment. Therefore, we discovered that macrophage polarization to either M1 or M2 phenotypes can regulate tumor development. This is based on the description of altering macrophage phenotypes by vesicle contents.


Subject(s)
Extracellular Vesicles , Macrophage Activation , Macrophages , Neoplasms , Animals , Humans , Cell Communication/immunology , Cytokines/metabolism , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/metabolism , Tumor Microenvironment/immunology
17.
Microorganisms ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674715

ABSTRACT

Bacillus velezensis has gained increasing recognition as a probiotic for improving animal growth performance and gut health. We identified six B. velezensis strains from sixty Bacillus isolates that were isolated from the cecal samples of fifteen different chicken breeds. We characterized the probiotic properties of these six B. velezensis strains. The effect of a selected strain (B. velezensis CML532) on chicken growth performance under normal feeding and Clostridium perfringens challenge conditions was also evaluated. The results revealed that the six B. velezensis strains differed in their probiotic properties, with strain CML532 exhibiting the highest bile salt and acid tolerance and high-yield enzyme and antibacterial activities. Genomic analyses showed that genes related to amino acid and carbohydrate metabolism, as well as genes related to starch and cellulose hydrolysis, were abundant in strain CML532. Dietary supplementation with strain CML532 promoted chicken growth, improved the gut barrier and absorption function, and modulated the gut microbiota. Under the C. perfringens challenge condition, strain CML532 alleviated intestinal damage, reduced ileal colonization of C. perfringens, and also improved chicken growth performance. Collectively, this study demonstrated that the newly isolated B. velezensis strain is a promising probiotic with beneficial effects on chicken growth performance and gut health.

18.
J Agric Food Chem ; 72(18): 10428-10438, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38660720

ABSTRACT

Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.


Subject(s)
Biocatalysis , Epoxide Hydrolases , Fungal Proteins , Fungicides, Industrial , Rhodotorula , Triazoles , Rhodotorula/enzymology , Rhodotorula/chemistry , Rhodotorula/metabolism , Triazoles/chemistry , Triazoles/metabolism , Fungicides, Industrial/chemistry , Fungicides, Industrial/metabolism , Fungicides, Industrial/chemical synthesis , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/chemistry , Stereoisomerism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Molecular Docking Simulation , Escherichia coli/enzymology , Escherichia coli/metabolism
19.
J Adv Res ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38677546

ABSTRACT

INTRODUCTION: Ulcerative colitis (UC) is a chronic inflammatory disease characterized by loss of immune tolerance to luminal antigens and progressive intestinal tissue injury. Thus, the re-establishment of immune tolerance is crucial for suppressing aberrant immune responses and UC progression. OBJECTIVES: This study aimed to investigate the mechanisms underlying the action of CDD-2103 and its bioactive compounds in mediating immune regulation in mouse models of colitis. METHODS: Two experimental colitis models, chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and T-cell transfer-induced Rag1-/- mice, were used to determine the effects of CDD-2103 on colitis progression. Single-cell transcriptome analysis was used to profile the immune landscape and its interactions after CDD-2103 treatment. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the major components interacting with lymphoid cells. A primary cell co-culture system was used to confirm the effects of bioactive component. RESULTS: CDD-2103 dose-dependently suppresses the progression of colitis induced by chemicals or T cell transplantation in Rag1-/- mice. The effect of CDD-2103 is primarily attributable to an increase in the de novo generation of regulatory T cells (Tregs) in the lamina propria (LP). Single-cell transcriptomic analysis revealed that CDD-2103 treatment increased the number of tolerogenic dendritic cells (DCs). Mechanistically, CDD-2103 promoted tolerogenic DCs accumulation and function by upregulating several genes in the electron transport chain related to oxidative phosphorylation, leading to increased differentiation of Tregs. Further LC-MS analysis identified several compounds in CDD-2103, particularly those distributed within the mesenteric lymph nodes of mice. Subsequent studies revealed that palmatine and berberine promoted tolerogenic bone marrow-derived dendritic cells (BMDC)-mediated Treg differentiation. CONCLUSION: Overall, our study demonstrated that the clinically beneficial effect of CDD-2103 in the treatment of UC is based on the induction of immune tolerance. In addition, this study supports berberine and palmatine as potential chemical entities in CDD-2103 that modulate immune tolerance.

20.
J Control Release ; 369: 642-657, 2024 May.
Article in English | MEDLINE | ID: mdl-38575072

ABSTRACT

Glioma is recognized as the most infiltrative and lethal form of central nervous system tumors and is known for its limited response to standard therapeutic interventions, high recurrence rate, and unfavorable prognosis. Recent progress in gene and immunotherapy presents a renewed sense of optimism in the treatment of glioblastoma. However, the barriers to overcome include the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), as well as the suppressive immune microenvironment. Overcoming these barriers remains a significant challenge. Here, we developed a lipid nanoparticle platform incorporating a dual-functional peptide (cholesterol-DP7-ACP-T7-modified DOTAP or DAT-LNP) capable of targeting glioma across the BBB and BBTB for brain tumor immunotherapy. This system was designed to achieve two key functions. First, the system could effectively penetrate the BBB during accumulation within brain tissue following intravenous administration. Second, this system enhances the maturation of dendritic cells, the polarization of M1 macrophages, and the activation of cytotoxic CD8+ T cells. This multifaceted approach effectively mitigates the immunosuppressive tumor microenvironment of glioma and promotes robust antitumor immune responses. Overall, the intravenous administration of the delivery system designed in this study demonstrates significant therapeutic potential for glioma and holds promising applications in the field of cancer immunotherapy.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Glioma , Immunotherapy , Nanoparticles , RNA, Small Interfering , Blood-Brain Barrier/metabolism , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Animals , Glioma/therapy , Glioma/immunology , Immunotherapy/methods , RNA, Small Interfering/administration & dosage , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Cell Line, Tumor , Humans , Mice, Inbred C57BL , Tumor Microenvironment , Mice , Cholesterol/chemistry , Cholesterol/administration & dosage , Lipids/chemistry , Quaternary Ammonium Compounds , Fatty Acids, Monounsaturated
SELECTION OF CITATIONS
SEARCH DETAIL
...