Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 95
1.
Hum Genomics ; 18(1): 33, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566168

The N6-methyladenosine (m6A) RNA modification plays essential roles in multiple biological processes, including stem cell fate determination. To explore the role of the m6A modification in pluripotent reprogramming, we used RNA-seq to map m6A effectors in human iPSCs, fibroblasts, and H9 ESCs, as well as in mouse ESCs and fibroblasts. By integrating the human and mouse RNA-seq data, we found that 19 m6A effectors were significantly upregulated in reprogramming. Notably, IGF2BPs, particularly IGF2BP1, were among the most upregulated genes in pluripotent cells, while YTHDF3 had high levels of expression in fibroblasts. Using quantitative PCR and Western blot, we validated the pluripotency-associated elevation of IGF2BPs. Knockdown of IGF2BP1 induced the downregulation of stemness genes and exit from pluripotency. Proteome analysis of cells collected at both the beginning and terminal states of the reprogramming process revealed that the IGF2BP1 protein was positively correlated with stemness markers SOX2 and OCT4. The eCLIP-seq target analysis showed that IGF2BP1 interacted with the coding sequence (CDS) and 3'UTR regions of the SOX2 transcripts, in agreement with the location of m6A modifications. This study identifies IGF2BP1 as a vital pluripotency-associated m6A effector, providing new insight into the interplay between m6A epigenetic modifications and pluripotent reprogramming.


Induced Pluripotent Stem Cells , Humans , Animals , Mice , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Epigenesis, Genetic , Fibroblasts/metabolism , Cellular Reprogramming/genetics
2.
Int J Biol Sci ; 20(1): 175-181, 2024.
Article En | MEDLINE | ID: mdl-38164178

Chronic myeloid leukemia (CML) is a malignant clonal disease involving hematopoietic stem cells that is characterized by myeloid cell proliferation in bone marrow and peripheral blood, and the presence of the Philadelphia (Ph) chromosome with BCR-ABL fusion gene. Treatment of CML has dramatically improved since the advent of tyrosine kinase inhibitors (TKI). However, there are a small subset of CML patients who develop resistance to TKI. Mutations in the ABL kinase domain (KD) are currently recognized as the leading cause of TKI resistance in CML. In this review, we discuss the concept of resistance and summarize recent advances exploring the mechanisms underlying CML resistance. Overcoming TKI resistance appears to be the most successful approach to reduce the burden of leukemia and enhance cures for CML. Advances in new strategies to combat drug resistance may rapidly change the management of TKI-resistant CML and expand the prospects for available therapies.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
3.
Adv Sci (Weinh) ; 11(1): e2303570, 2024 Jan.
Article En | MEDLINE | ID: mdl-37939296

As one of novel hallmarks of cancer, lipid metabolic reprogramming has recently been becoming fascinating and widely studied. Lipid metabolic reprogramming in cancer is shown to support carcinogenesis, progression, distal metastasis, and chemotherapy resistance by generating ATP, biosynthesizing macromolecules, and maintaining appropriate redox status. Notably, increasing evidence confirms that lipid metabolic reprogramming is under the control of dysregulated non-coding RNAs in cancer, especially lncRNAs and circRNAs. This review highlights the present research findings on the aberrantly expressed lncRNAs and circRNAs involved in the lipid metabolic reprogramming of cancer. Emphasis is placed on their regulatory targets in lipid metabolic reprogramming and associated mechanisms, including the clinical relevance in cancer through lipid metabolism modulation. Such insights will be pivotal in identifying new theranostic targets and treatment strategies for cancer patients afflicted with lipid metabolic reprogramming.


Neoplasms , RNA, Long Noncoding , Humans , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Metabolic Reprogramming , Neoplasms/genetics , Neoplasms/metabolism , Epigenesis, Genetic/genetics , Lipids
4.
Sci Data ; 10(1): 755, 2023 11 02.
Article En | MEDLINE | ID: mdl-37919270

Pluripotent stem cells (PSCs) provide unlimited resources for regenerative medicine because of their potential for self-renewal and differentiation into many different cell types. The pluripotency of these PSCs is dynamically regulated at multiple cellular organelle levels. To delineate the factors that coordinate this inter-organelle crosstalk, we profiled those long non-coding RNAs (lncRNAs) that may participate in the regulation of multiple cellular organelles in PSCs. We have developed a unique strand-specific RNA-seq dataset of lncRNAs that may interact with mitochondria (mtlncRNAs) and polyribosomes (prlncRNAs). Among the lncRNAs differentially expressed between induced pluripotent stem cells (iPSCs), fibroblasts, and positive control H9 human embryonic stem cells, we identified 11 prlncRNAs related to stem cell reprogramming and exit from pluripotency. In conjunction with the total RNA-seq data, this dataset provides a valuable resource to examine the role of lncRNAs in pluripotency, particularly for studies investigating the inter-organelle crosstalk network involved in germ cell development and human reproduction.


Induced Pluripotent Stem Cells , Pluripotent Stem Cells , RNA, Long Noncoding , Humans , Cell Differentiation , Cellular Reprogramming , Mitochondria/genetics , Mitochondria/metabolism , Polyribosomes , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166804, 2023 10.
Article En | MEDLINE | ID: mdl-37429560

Mitochondrial diseases are a group of clinical disorders caused by mutations in the genes encoded by either the nuclear or the mitochondrial genome involved in mitochondrial oxidative phosphorylation. Disorders become evident when mitochondrial dysfunction reaches a cell-specific threshold. Similarly, the severity of disorders is related to the degree of gene mutation. Clinical treatments for mitochondrial diseases mainly rely on symptomatic management. Theoretically, replacing or repairing dysfunctional mitochondria to acquire and preserve normal physiological functions should be effective. Significant advances have been made in gene therapies, including mitochondrial replacement therapy, mitochondrial genome manipulation, nuclease programming, mitochondrial DNA editing, and mitochondrial RNA interference. In this paper, we review the recent progress in these technologies by focusing on advancements that overcome limitations.


Genome, Mitochondrial , Mitochondrial Diseases , Humans , Genome, Mitochondrial/genetics , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mitochondria/genetics , Mutation
7.
Bio Protoc ; 13(14): e4718, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37497457

Non-coding RNAs (ncRNAs) are defined as RNAs that do not encode proteins, but many ncRNAs do have the ability to regulate gene expression. These ncRNAs play a critical role in the epigenetic regulation of various physiological and pathological processes through diverse biochemical mechanisms. However, the existing screening methods to identify regulatory ncRNAs only focus on whole-cell expression levels and do not capture every ncRNA that targets certain genes. We describe a new method, chromatin-RNA in situ reverse transcription sequencing (CRIST-seq), that can identify all the ncRNAs that are associated with the regulation of any given gene. In this article, we targeted the ncRNAs that are associated with pluripotent gene Sox2, allowing us to catalog the ncRNA regulation network of pluripotency maintenance. This methodology is universally applicable for the study of epigenetic regulation of any genes by making simple changes on the CRISPR-dCas9 gRNAs. Key features This method provides a new technique for screening ncRNAs and establishing chromatin interaction networks. The target gene for this method can be any gene of interest and any site in the entire genome. This method can be further extended to detect RNAs, DNAs, and proteins that interact with target genes. Graphical overview.

8.
Life Sci ; 322: 121658, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37023951

Millions of women worldwide suffer from infertility associated with gynecologic disorders such as premature ovarian insufficiency, polycystic ovary syndrome, Asherman syndrome, endometriosis, preeclampsia, and fallopian tube obstruction. These disorders can lead to infertility and thereby affect the quality of life of the infertile couple because of their psychological impact and significant costs. In recent years, stem cell therapy has emerged as a therapeutic approach to repair or replace damaged tissues or organs. This review describes the recent development as well as the underlying mechanisms of stem cell therapy for a variety of female reproductive diseases, offering us new therapeutic options for the treatment of female reproductive and endocrine dysfunction.


Infertility, Female , Infertility , Polycystic Ovary Syndrome , Pregnancy , Female , Humans , Quality of Life , Polycystic Ovary Syndrome/therapy , Polycystic Ovary Syndrome/complications , Reproduction , Stem Cells , Infertility, Female/therapy , Infertility, Female/etiology
9.
Cell Prolif ; 56(3): e13367, 2023 Mar.
Article En | MEDLINE | ID: mdl-36547008

Protein translation is a critical regulatory event involved in nearly all physiological and pathological processes. Eukaryotic translation initiation factors are dedicated to translation initiation, the most highly regulated stage of protein synthesis. Eukaryotic translation initiation factor 4G2 (eIF4G2, also called p97, NAT1 and DAP5), an eIF4G family member that lacks the binding sites for 5' cap binding protein eIF4E, is widely considered to be a key factor for internal ribosome entry sites (IRESs)-mediated cap-independent translation. However, recent findings demonstrate that eIF4G2 also supports many other translation initiation pathways. In this review, we summarize the role of eIF4G2 in a variety of cap-independent and -dependent translation initiation events. Additionally, we also update recent findings regarding the role of eIF4G2 in apoptosis, cell survival, cell differentiation and embryonic development. These studies reveal an emerging new picture of how eIF4G2 utilizes diverse translational mechanisms to regulate gene expression.


Eukaryotic Initiation Factor-4G , Protein Biosynthesis , Apoptosis , Cell Differentiation , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Protein Processing, Post-Translational , Humans
10.
Mol Ther ; 31(6): 1791-1806, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-36523163

Nuclear reprogramming of somatic cells into a pluripotent status has the potential to create patient-specific induced pluripotent stem cells for regenerative medicine. Currently, however, the epigenetic mechanisms underlying this pluripotent reprogramming are poorly understood. To delineate this epigenetic regulatory network, we utilized a chromatin RNA in situ reverse transcription sequencing (CRIST-seq) approach to identify long noncoding RNAs (lncRNAs) embedded in the 3-dimensional intrachromosomal architecture of stem cell core factor genes. By combining CRIST-seq and RNA sequencing, we identified Oct4-Sox2 interacting lncRNA 9 (Osilr9) as a pluripotency-associated lncRNA. Osilr9 expression was associated with the status of stem cell pluripotency in reprogramming. Using short hairpin RNA (shRNA) knockdown, we showed that this lncRNA was required for the optimal maintenance of stem cell pluripotency. Overexpression of Osilr9 induced robust activation of endogenous stem cell core factor genes in fibroblasts. Osilr9 participated in the formation of the intrachromosomal looping required for the maintenance of pluripotency. After binding to the Oct4 promoter, Osilr9 recruited the DNA demethylase ten-eleven translocation 1, leading to promoter demethylation. These data demonstrate that Osilr9 is a critical chromatin epigenetic modulator that coordinates the promoter activity of core stem cell factor genes, highlighting the critical role of pluripotency-associated lncRNAs in stem cell pluripotency and reprogramming.


Induced Pluripotent Stem Cells , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , DNA Demethylation , Induced Pluripotent Stem Cells/metabolism , Cellular Reprogramming/genetics , Chromatin/genetics , Chromatin/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism
11.
Front Immunol ; 13: 970195, 2022.
Article En | MEDLINE | ID: mdl-36248894

Natural killer (NK) cells perform immune surveillance functions in tumors. The antitumor effects of NK cells are closely related to tumor occurrence and development. However, the molecular factors that determine NK cell antitumor activity remain to be characterized. In the present study, we identified a novel long noncoding RNA (lncRNA), NK cell activity-associated lncRNA 1 (NCAL1), and investigated its function in NK cells. NCAL1 was primarily located in NK cell nuclei, where it functioned by activating Gab2, a scaffold protein with an essential role in immune cells. Gab2 positively regulated the killing activity of NK cells. Mechanistically, NCAL1 upregulated Gab2 epigenetically by binding to the Gab2 promoter, which decreased methylation, recruited the transcription factor Sp1, and increased H3K4me3 and H3K27ac levels in the Gab2 promoter. Furthermore, NCAL1 enhanced the cytotoxicity of NK cells toward tumor cells through the Gab2-PI3K-AKT pathway. Thus, NCAL1 potentiates NK cell cytotoxicity and is a promising therapeutic target to improve NK cell therapy.


Neoplasms , RNA, Long Noncoding , Adaptor Proteins, Signal Transducing/metabolism , Humans , Killer Cells, Natural , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
12.
Cells ; 11(19)2022 10 05.
Article En | MEDLINE | ID: mdl-36231092

Recurrent spontaneous abortion (RSA) is a highly heterogeneous complication of pregnancy with the underlying mechanisms remaining uncharacterized. Dysregulated decidualization is a critical contributor to the phenotypic alterations related to pregnancy complications. To understand the molecular factors underlying RSA, we explored the role of longnoncoding RNAs (lncRNAs) in the decidual microenvironment where the crosstalk at the fetal-maternal interface occurs. By exploring RNA-seq data from RSA patients, we identified H19, a noncoding RNA that exhibits maternal monoallelic expression, as one of the most upregulated lncRNAs associated with RSA. The paternally expressed fetal mitogen IGF2, which is reciprocally coregulated with H19 within the same imprinting cluster, was also upregulated. Notably, both genes underwent loss of imprinting, as H19 and IGF2 were actively transcribed from both parental alleles in some decidual tissues. This loss of imprinting in decidual tissues was associated with the loss of the H3K27m3 repressive histone marker in the IGF2 promoter, CpG hypomethylation at the central CTCF binding site in the imprinting control center (ICR), and the loss of CTCF-mediated intrachromosomal looping. These data suggest that dysregulation of the H19/IGF2 imprinting pathway may be an important epigenetic factor in the decidual microenvironment related to poor decidualization.


Histones , RNA, Long Noncoding , CCCTC-Binding Factor/genetics , DNA Methylation/genetics , Female , Genomic Imprinting , Histones/metabolism , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Mitogens , Pregnancy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics
13.
Cancer Lett ; 548: 215861, 2022 11 01.
Article En | MEDLINE | ID: mdl-35981570

Insulin-like growth factor I receptor (IGF1R) is frequently upregulated in breast cancer. Due to its intrinsic tyrosine kinase activity, aberrant activation of the IGF1R signaling axis may enhance tumor cell proliferation and cancer stemness, causing tumor relapse, metastasis and resistance to chemotherapy. We utilized a chromatin RNA in situ reverse transcription (CRIST) approach to characterize molecular factors that regulate the IGF1R network. We identified lncRNA HULC (Highly Upregulated in Liver Cancer) as a key trans-regulator of IGF1R in breast cancer cells. Loss of HULC suppressed the expression of IGF1R and the activation of its downstream PI3K/AKT pathway, while HULC overexpression activated the axis in breast cancer cells. Using a transcription-associated trap (RAT) assay, we demonstrated that HULC functioned as a nuclear lncRNA and epigenetically activated IGF1R by directly binding to the intragenic regulatory elements of the gene, orchestrating intrachromosomal interactions, and promoting histone H3K9 acetylation. The activated HULC-IGF1R/PI3K/AKT pathway mediated tumor resistance to cisplatin through the increased expression of cancer stemness markers, including NANOG, SOX2, OCT4, CD44 and ALDH1A1. In immunodeficient mice, stimulation of the HULC-IGF1R pathway promoted tumor metastasis. These data suggest that HULC may be a new epigenetic target for IGF1R axis-targeted therapeutic intervention.


RNA, Long Noncoding , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Chromatin , Cisplatin/metabolism , Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic , Histones/metabolism , Insulin-Like Growth Factor I/metabolism , Mice , Neoplasm Recurrence, Local/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Receptor, IGF Type 1/metabolism
14.
J Cell Biol ; 221(4)2022 04 04.
Article En | MEDLINE | ID: mdl-35171230

The molecular circuitry that causes stem cells to exit from pluripotency remains largely uncharacterized. Using chromatin RNA in situ reverse transcription sequencing, we identified Peln1 as a novel chromatin RNA component in the promoter complex of Oct4, a stem cell master transcription factor gene. Peln1 was negatively associated with pluripotent status during somatic reprogramming. Peln1 overexpression caused E14 cells to exit from pluripotency, while Peln1 downregulation induced robust reprogramming. Mechanistically, we discovered that Peln1 interacted with the Oct4 promoter and recruited the DNA methyltransferase DNMT3A. By de novo altering the epigenotype in the Oct4 promoter, Peln1 dismantled the intrachromosomal loop that is required for the maintenance of pluripotency. Using RNA reverse transcription-associated trap sequencing, we showed that Peln1 targets multiple pathway genes that are associated with stem cell self-renewal. These findings demonstrate that Peln1 can act as a new epigenetic player and use a trans mechanism to induce an exit from the pluripotent state in stem cells.


Chromosomes, Mammalian/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA, Long Noncoding/metabolism , Animals , Cell Line , Cellular Reprogramming/genetics , DNA Methylation/genetics , DNA Methyltransferase 3A/metabolism , Gene Knockdown Techniques , Humans , Mice , Octamer Transcription Factor-3 , Protein Binding , RNA, Long Noncoding/genetics
15.
Front Cell Dev Biol ; 9: 699621, 2021.
Article En | MEDLINE | ID: mdl-34568319

Mitophagy is a specialized autophagic pathway responsible for the selective removal of damaged or dysfunctional mitochondria by targeting them to the autophagosome in order to maintain mitochondria quality. The role of mitophagy in tumorigenesis has been conflicting, with the process both supporting tumor cell survival and promoting cell death. Cancer cells may utilize the mitophagy pathway to augment their metabolic requirements and resistance to cell death, thereby leading to increased cell proliferation and invasiveness. This review highlights major regulatory pathways of mitophagy involved in cancer. In particular, we summarize recent progress regarding how nuclear-encoded long non-coding RNAs (lncRNAs) function as novel epigenetic players in the mitochondria of cancer cells, affecting the malignant behavior of tumors by regulating mitophagy. Finally, we discuss the potential application of regulating mitophagy as a new target for cancer therapy.

17.
Genome Biol ; 22(1): 233, 2021 08 19.
Article En | MEDLINE | ID: mdl-34412677

BACKGROUND: A specific 3-dimensional intrachromosomal architecture of core stem cell factor genes is required to reprogram a somatic cell into pluripotency. As little is known about the epigenetic readers that orchestrate this architectural remodeling, we used a novel chromatin RNA in situ reverse transcription sequencing (CRIST-seq) approach to profile long noncoding RNAs (lncRNAs) in the Oct4 promoter. RESULTS: We identify Platr10 as an Oct4 - Sox2 binding lncRNA that is activated in somatic cell reprogramming. Platr10 is essential for the maintenance of pluripotency, and lack of this lncRNA causes stem cells to exit from pluripotency. In fibroblasts, ectopically expressed Platr10 functions in trans to activate core stem cell factor genes and enhance pluripotent reprogramming. Using RNA reverse transcription-associated trap sequencing (RAT-seq), we show that Platr10 interacts with multiple pluripotency-associated genes, including Oct4, Sox2, Klf4, and c-Myc, which have been extensively used to reprogram somatic cells. Mechanistically, we demonstrate that Platr10 helps orchestrate intrachromosomal promoter-enhancer looping and recruits TET1, the enzyme that actively induces DNA demethylation for the initiation of pluripotency. We further show that Platr10 contains an Oct4 binding element that interacts with the Oct4 promoter and a TET1-binding element that recruits TET1. Mutation of either of these two elements abolishes Platr10 activity. CONCLUSION: These data suggest that Platr10 functions as a novel chromatin RNA molecule to control pluripotency in trans by modulating chromatin architecture and regulating DNA methylation in the core stem cell factor network.


Cellular Reprogramming , Chromatin/metabolism , Pluripotent Stem Cells/metabolism , RNA, Long Noncoding/metabolism , Animals , DNA Methylation , Fibroblasts/metabolism , Mice , Octamer Transcription Factor-3/genetics , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Regulatory Sequences, Nucleic Acid , SOXB1 Transcription Factors/metabolism , Sequence Analysis, RNA
18.
Mol Ther Nucleic Acids ; 23: 264-276, 2021 Mar 05.
Article En | MEDLINE | ID: mdl-33425485

Mitochondrial dysfunction is a metabolic hallmark of cancer cells. In search of molecular factors involved in this dysregulation in hepatocellular carcinoma (HCC), we found that the nuclear-encoded long noncoding RNA (lncRNA) MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was aberrantly enriched in the mitochondria of hepatoma cells. Using RNA reverse transcription-associated trap sequencing (RAT-seq), we showed that MALAT1 interacted with multiple loci on mitochondrial DNA (mtDNA), including D-loop, COX2, ND3, and CYTB genes. MALAT1 knockdown induced alterations in the CpG methylation of mtDNA and in mitochondrial transcriptomes. This was associated with multiple abnormalities in mitochondrial function, including altered mitochondrial structure, low oxidative phosphorylation (OXPHOS), decreased ATP production, reduced mitophagy, decreased mtDNA copy number, and activation of mitochondrial apoptosis. These alterations in mitochondrial metabolism were associated with changes in tumor phenotype and in pathways involved in cell mitophagy, mitochondrial apoptosis, and epigenetic regulation. We further showed that the RNA-shuttling protein HuR and the mitochondria transmembrane protein MTCH2 mediated the transport of MALAT1 in this nuclear-mitochondrial crosstalk. This study provides the first evidence that the nuclear genome-encoded lncRNA MALAT1 functions as a critical epigenetic player in the regulation of mitochondrial metabolism of hepatoma cells, laying the foundation for further clarifying the roles of lncRNAs in tumor metabolic reprogramming.

19.
Cancer Lett ; 503: 103-109, 2021 04 10.
Article En | MEDLINE | ID: mdl-33516792

Genomic instability is an important characteristic of cancer, which promotes clonal evolution and tumorigenesis by increasing the frequency of gene destruction and loss of genome integrity. Generally, the maintenance of genomic stability depends significantly on the accurate regulation and timely repair of different genomic scales, ranging from DNA sequence to chromatin higher-order structures to chromosomes. Once irreversible damage and imperfect repair occurred, the resulting genomic instability can lead to a higher risk of tumorigenesis. However, how these factors disrupt genomic stability and their specific tumorigenic mechanisms remain unclear. Inspiringly, numerous studies have confirmed that long noncoding RNAs (lncRNAs), an important regulator of epigenetic inheritance, are functional in such process. Thus, this review aimed to discuss the vital factors that may lead to genomic instability at these multiple genomic scales, with an emphasis on the role of lncRNAs in it.


Genomic Instability , Neoplasms/genetics , RNA, Long Noncoding/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans
20.
Int J Biol Sci ; 16(11): 1861-1875, 2020.
Article En | MEDLINE | ID: mdl-32398955

Induced pluripotent stem cells (iPSCs), derived from reprogramming of somatic cells by a cocktail of transcription factors, have the capacity for unlimited self-renewal and the ability to differentiate into all of cell types present in the body. iPSCs may have therapeutic potential in regenerative medicine, replacing injured tissues or even whole organs. In this study, we examine epigenetic factors embedded in the specific 3-dimensional intrachromosomal architecture required for the activation of endogenous pluripotency genes. Using chromatin RNA in situ reverse transcription sequencing (CRIST-seq), we identified an Oct4-Sox2 binding long noncoding RNA, referred as to Osblr8, that is present in association with pluripotency status. Osblr8 was highly expressed in iPSCs and E14 embryonic stem cells, but it was silenced in fibroblasts. By using shRNA to knock down Osblr8, we found that this lncRNA was required for the maintenance of pluripotency. Overexpression of Osblr8 activated endogenous stem cell core factor genes. Mechanistically, Osblr8 participated in the formation of an intrachromosomal looping structure that is required to activate stem cell core factors during reprogramming. In summary, we have demonstrated that lncRNA Osblr8 is a chromatin architecture modulator of pluripotency-associated master gene promoters, highlighting its critical epigenetic role in reprogramming.


Cellular Reprogramming , Epigenesis, Genetic/physiology , RNA, Long Noncoding/metabolism , Animals , Biomarkers , Chromatin , Embryoid Bodies , Fibroblasts , Gene Knockdown Techniques , Induced Pluripotent Stem Cells , Mice , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , RNA-Seq , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcriptome
...