Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Drug Dev Ind Pharm ; : 1-13, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39259031

ABSTRACT

OBJECTIVE: This research aims to improve the bioavailability and anti-hepatocellular carcinoma (HCC) efficacy of Ginsenoside Rg3 by modification with poly (lactic acid hydroxyacetic acid)-poly(ethylene glycol) (PLGA-PEG). METHODS: PLGA-PEG-Rg3 was obtained by emulsification and evaluated it physiochemical characterization by FTIR, SEM, laser particle-size analyzer and HPLC. The effect of the PLGA-PEG-Rg3 and Rg3 on HepG2 cells was compared in vitro studies, including cell proliferation, transwell and a series of apoptosis detection, and in-situ HCC model. RESULTS: The PLGA-PEG-Rg3 were 122 nm in size and 0.112 in polydispersity index with sustained release profile in vitro. Compared to Rg3, PLGA-PEG-Rg3 was more effective in suppressing HepG2 growth and inducing apoptosis by the mitochondrial apoptosis pathway in vitro. And PLGA-PEG modification enhanced the liver-targeting ability and drug circulation time of Rg3 in vivo, resulting in PLGA-PEG-Rg3 possessing superior performance in inhibiting tumor growth and prolonging the survival time of tumor-bearing mice than Rg3. CONCLUSIONS: Overall, these results showed PLGA-PEG-Rg3 enhanced the anti-tumor effect of Rg3 in HCC.

2.
Mycotoxin Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990416

ABSTRACT

Mycotoxins, such as aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisins (FBs), ochratoxin A (OTA), T-2 toxin (T-2), and zearalenone (ZEN), can contaminate animal feeds and pose risks to animal health and production performance. These mycotoxins are commonly found in cereals and grains, with the increased use of cereals in pet food, there is a rising concern about mycotoxin contamination among pet owners. To address this, we analyzed imported brands of feline and canine food from the Chinese market produced in 2021-2022. Ninety-three samples were analyzed, comprising 45 feline food and 48 canine food samples. Among them, 14 were canned food and 79 were dry food. The results indicate that AFB1, DON, FBs, OTA, T-2, and ZEN occurred in 32.26%, 98.92%, 22.58%, 73.12%, 55.91%, and 7.53% of the samples, respectively. The most prevalent mycotoxin was DON, followed by OTA, T-2, AFB1, and FBs, whereas ZEN was less frequently detected. The mean concentrations of the six mycotoxins in pet feed samples were 3.17 µg/kg for AFB1, 0.65 mg/kg for DON, 2.15 mg/kg for FBs, 6.27 µg/kg for OTA, 20.00 µg/kg for T-2, and 30.00 µg/kg for ZEN. The levels of mycotoxins were generally below the limits of the Pet Feed Hygiene Regulations of China and the EU. Notably, a substantial majority of the pet food samples (88 out of 93) were contaminated by two or more mycotoxins. AFB1, FBs, OTA, and ZEN occurred slightly more often in feline food than in canine food. Except for OTA, the contamination rates for the other five mycotoxins in canned food were lower than those in dry food. Moreover, except for AFB1, the levels of the other five mycotoxins in canned foods were lower than those in dry foods. This study highlights the widespread contamination of pet foods with mycotoxins, which poses a significant risk to pets from continuous exposure to multiple mycotoxins.

3.
ACS Appl Mater Interfaces ; 16(28): 36735-36744, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38952105

ABSTRACT

The piezoelectric properties of two-dimensional semiconductor nanobubbles present remarkable potential for application in flexible optoelectronic devices, and the piezoelectric field has emerged as an efficacious pathway for both the separation and migration of photogenerated electron-hole pairs, along with inhibition of recombination. However, the comprehension and control of photogenerated carrier dynamics within nanobubbles still remain inadequate. Hence, this study is dedicated to underscore the importance of in situ detection and detailed characterization of photogenerated electron-hole pairs in nanobubbles to enrich understanding and strategic manipulation in two-dimensional semiconductor materials. Utilizing frequency modulation kelvin probe force microscopy (FM-KPFM) and strain gradient distribution techniques, the existence of a piezoelectric field in monolayer WS2 nanobubbles was confirmed. Combining w/o and with illumination FM-KPFM, second-order capacitance gradient technique and in situ nanoscale tip-enhanced photoluminescence characterization techniques, the interrelationships among the piezoelectric effect, interlayer carrier transfer, and the funneling effect for photocarrier dynamics process across various nanobubble sizes were revealed. Notably, for a WS2/graphene bubble height of 15.45 nm, a 0 mV surface potential difference was recorded in the bubble region w/o and with illumination, indicating a mutual offset of piezoelectric effect, interlayer carrier transfer, and the funneling effect. This phenomenon is prevalent in transition metal dichalcogenides materials exhibiting inversion symmetry breaking. The implication of our study is profound for advancing the understanding of the dynamics of photogenerated electron-hole pair in nonuniform strain piezoelectric systems, and offers a reliable framework for the separation and modulation of photogenerated electron-hole pair in flexible optoelectronic devices and photocatalytic applications.

4.
Angew Chem Int Ed Engl ; 63(36): e202408996, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38873975

ABSTRACT

Two-dimensional Ti3C2Tx MXene materials, with metal-like conductivities and versatile terminals, have been considered to be promising surface modification materials for Zn-metal-based aqueous batteries (ZABs). However, the oxygen-rich and hybridized terminations caused by conventional methods limit their advantages in inhibiting zinc dendrite growth and reducing corrosion-related side reactions. Herein, -O-depleted, -Cl-terminated Ti3C2Tx was precisely fabricated by the molten salt electrochemical etching of Ti3AlC2, and controlled in situ terminal replacement from -Cl to unitary -S or -Se was achieved. The as-prepared -O-depleted and unitary-terminal Ti3C2Tx as Zn anode coatings provided excellent hydrophobicity and enriched zinc-ionophilic sites, facilitating Zn2+ horizontal transport for homogeneous deposition and effectively suppressing water-induced side reactions. The as-assembled Ti3C2Sx@Zn symmetric cell achieved a cycle life of up to 4200 h at a current density and areal capacity of 2 mA cm-2 and 1 mAh cm-2, respectively, with an impressive cumulative capacity of up to 7.25 Ah cm-2 at 5 mA cm-2//2 mAh cm-2. These findings provide an effective electrochemical strategy for tailoring -O-depleted and unitary Ti3C2Tx surface terminals and advancing the understanding of the role of specific Ti3C2Tx surface chemistry in regulating the plating/stripping behaviors of metal ions.

5.
Chem Soc Rev ; 53(13): 6860-6916, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38833171

ABSTRACT

Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.

6.
Angew Chem Int Ed Engl ; 63(23): e202405315, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38588049

ABSTRACT

The surface and interface chemistry are critical for controlling the properties of two-dimensional transition metal carbides and nitrides (MXenes). Numerous efforts have been devoted to the functionalization of MXenes with small inorganic ligands; however, few etching methods have been reported on the direct bonding of organic groups to MXene surfaces. In this work, we demonstrated an efficient and rapid strategy for the direct synthesis of 2D Ti3C2Tx MXene nanosheets with organic terminal groups in an organic Lewis acid (trifluoromethanesulfonic acid) solvent, without introducing additional intercalations. The dissolution of aluminum and the subsequent in situ introduction of trifluoromethanesulfonic acid resulted in the extraction of Ti3C2Tx MXene (T=CF3SO3 -) (denoted as CF3SO3H-Ti3C2Tx) flakes with sizes reaching 15 µm and high productivity (over 70 %) of monolayers or few layers. More importantly, the large CF3SO3H-Ti3C2Tx MXene nanosheets had high colloidal stability, making them promising as efficient electrocatalysts for the hydrogen evolution reaction.

7.
Dig Dis Sci ; 69(4): 1263-1273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451429

ABSTRACT

BACKGROUND: A grim prognosis of pancreatic cancer (PCa) was attributed to the difficulty in early diagnosis of the disease. AIMS: Identifying novel biomarkers for early detection of PCa is thus urgent to improve the overall survival rates of patients. METHODS: The study was performed firstly by identification of candidate microRNAs (miRNAs) in formalin-fixed, paraffin-embedded tissues using microarray profiles, and followed by validation in a serum-based cohort study to assess clinical utility of the candidates. In the cohorts, a total of 1273 participants from four centers were retrospectively recruited as two cohorts including training and validation cohort. The collected serum specimens were analyzed by real-time polymerase chain reaction. RESULTS: We identified 27 miRNAs expressed differentially in PCa tissues as compared to the benign. Of which, the top-four was selected as a panel whose diagnostic efficacy was fully assessed in the serum specimens. The panel exhibited superior to CA19-9, CA125, CEA and CA242 in discriminating patients with early stage PCa from healthy controls or non-PCa including chronic pancreatitis as well as pancreatic cystic neoplasms, with the area under the curves (AUC) of 0.971 (95% CI 0.956-0.987) and 0.924 (95% CI 0.899-0.949), respectively. Moreover, the panel eliminated interference from other digestive tumors with a specificity of 90.2%. CONCLUSIONS: A panel of four serum miRNAs was developed showing remarkably discriminative ability of early stage PCa from either healthy controls or other pancreatic diseases, suggesting it may be developed as a novel, noninvasive approach for early screening of PCa in clinic.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , MicroRNAs/genetics , Retrospective Studies , Cohort Studies , Biomarkers, Tumor , Early Detection of Cancer , Pancreatic Neoplasms/pathology
8.
Curr Oncol ; 31(3): 1311-1322, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38534932

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) refers to the malignancy of squamous cells in the head and neck region. Ranked as the seventh most common cancer worldwide, HNSCC has a very low survival rate, highlighting the importance of finding therapeutic targets for the disease. Integrins are cell surface receptors that play a crucial role in mediating cellular interactions with the extracellular matrix (ECM). Within this protein family, Integrin αV (ITGAV) has received attention for its important functional role in cancer progression. In this study, we first demonstrated the upregulation of ITGAV expression in HNSCC, with higher ITGAV expression levels correlating with significantly lower overall survival, based on TCGA (the Cancer Genome Atlas) and GEO datasets. Subsequent in vitro analyses revealed an overexpression of ITGAV in highly invasive HNSCC cell lines UM1 and UMSCC-5 in comparison to low invasive HNSCC cell lines UM2 and UMSCC-6. In addition, knockdown of ITGAV significantly inhibited the migration, invasion, viability, and colony formation of HNSCC cells. In addition, chromatin immunoprecipitation (ChIP) assays indicated that SOX11 bound to the promoter of ITGAV gene, and SOX11 knockdown resulted in decreased ITGAV expression in HNSCC cells. In conclusion, our studies suggest that ITGAV promotes the progression of HNSCC cells and may be regulated by SOX11 in HNSCC cells.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Integrin alphaV , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor
9.
Proc Natl Acad Sci U S A ; 121(10): e2319136121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408257

ABSTRACT

Single-atom catalysts (SACs) with maximized metal atom utilization and intriguing properties are of utmost importance for energy conversion and catalysis science. However, the lack of a straightforward and scalable synthesis strategy of SACs on diverse support materials remains the bottleneck for their large-scale industrial applications. Herein, we report a general approach to directly transform bulk metals into single atoms through the precise control of the electrodissolution-electrodeposition kinetics in ionic liquids and demonstrate the successful applicability of up to twenty different monometallic SACs and one multimetallic SAC with five distinct elements. As a case study, the atomically dispersed Pt was electrodeposited onto Ni3N/Ni-Co-graphene oxide heterostructures in varied scales (up to 5 cm × 5 cm) as bifunctional catalysts with the electronic metal-support interaction, which exhibits low overpotentials at 10 mA cm-2 for hydrogen evolution reaction (HER, 30 mV) and oxygen evolution reaction (OER, 263 mV) with a relatively low Pt loading (0.98 wt%). This work provides a simple and practical route for large-scale synthesis of various SACs with favorable catalytic properties on diversified supports using alternative ionic liquids and inspires the methodology on precise synthesis of multimetallic single-atom materials with tunable compositions.

10.
Nat Commun ; 15(1): 1536, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378620

ABSTRACT

The development of highly efficient active integrated photonic circuits is crucial for advancing information and computing science. Lead halide perovskite semiconductors, with their exceptional optoelectronic properties, offer a promising platform for such devices. In this study, active micro multifunctional photonic devices were fabricated on monocrystalline CsPbBr3 perovskite thin films using a top-down etching technique with focused ion beams. The etched microwire exhibited a high-quality micro laser that could serve as a light source for integrated devices, facilitating angle-dependent effective propagation between coupled perovskite-microwire waveguides. Employing this strategy, multiple perovskite-based active integrated photonic devices were realized for the first time. These devices included a micro beam splitter that coherently separated lasing signals, an X-coupler performing transfer matrix functions with two distinguishable light sources, and a Mach-Zehnder interferometer manipulating the splitting and coalescence of coherent light beams. These results provide a proof-of-concept for active integrated functionalized photonic devices based on perovskite semiconductors, representing a promising avenue for practical applications in integrated optical chips.

11.
J Chem Phys ; 160(4)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38270240

ABSTRACT

Due to the limitation of inherent ultra-high electron concentration, the electrical properties of In2O3 resemble those of conductors rather than semiconductors prior to special treatment. In this study, the effect of various annealing treatments on the microstructure, optical properties, and oxygen vacancies of the films and transistors is systematically investigated. Our finding reveals a progressive crystallization trend in the films with increasing annealing temperature. In addition, a higher annealing temperature is also associated with the reduction in the concentration of oxygen vacancies, as well as an elevation in both optical transmittance and optical bandgap. Furthermore, with the implementation of annealing process, the devices gradually transform from no pronounced gate control to exhibit with excellent gate control and electrical performances. The atomic layer deposited Hf-doped In2O3 thin film transistor annealed at 250 °C exhibits optimal electrical properties, with a field-effect mobility of 18.65 cm2 V-1 s-1, a subthreshold swing of 0.18 V/dec, and an Ion/Ioff ratio of 2.76 × 106. The results indicate that the impact of varying annealing temperatures can be attributed to the modulation of oxygen vacancies within the films. This work serves as a complementary study for the existing post-treatment of oxide films and provides a reliable reference for utilization of the annealing process in practical applications.

12.
Int J Surg Case Rep ; 115: 109123, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38271866

ABSTRACT

INTRODUCTION AND IMPORTANCE: The elbow is one of the most mobile joints, and its movement is very important. Bony ankylosed elbow is an uncommon condition leading to complete loss of activity of elbow, and then lead to severe disability and limitation in activities of daily living. CASE PRESENTATION: A 63-year-old woman sustained comminuted fracture of left distal humerus. She underwent open reduction and internal fixation by plates. After the plates were removed in 2016,stiffness developed.The elbow was stable but fixed at 90°ï¼Œthere was no vascular injury or deficit in sensory and motor function of the ulnar nerve. She hopes to eliminate pain and restore normal mobility compatible with ADL. CLINICAL DISCUSSION: Complete bony ankylosis of the elbow joint may be caused by trauma, rheumatic disease, burns, congenital stiffness and other conditions. Even with the compensation of shoulder and wrist, it will still have a great impact on upper limb function. Whether to treat mainly depends on whether the patient has the require to improve the functionality and return to daily activities. Treatment methods are very limited, including interposition arthroplasty and TEA. Defect of soft tissue appeared was seen in our case, Hernia Patch was innovatively applied to reconstruct the defect of soft tissue and maintain continuity of elbow extension mechanism. CONCLUSION: Patients with post-traumatic elbow joint ankylosis were suffered from severe bony abnormalities, but also soft tissue contracture or defects due to multiple operations and trauma. We present a case of complete bony ankylosed elbow treated with total elbow arthroplasty and Hernia Patch.

13.
NPJ Digit Med ; 6(1): 231, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38097771

ABSTRACT

The monitoring of physiological parameters is a crucial topic in promoting human health and an indispensable approach for assessing physiological status and diagnosing diseases. Particularly, it holds significant value for patients who require long-term monitoring or with underlying cardiovascular disease. To this end, Visual Contactless Physiological Monitoring (VCPM) is capable of using videos recorded by a consumer camera to monitor blood volume pulse (BVP) signal, heart rate (HR), respiratory rate (RR), oxygen saturation (SpO2) and blood pressure (BP). Recently, deep learning-based pipelines have attracted numerous scholars and achieved unprecedented development. Although VCPM is still an emerging digital medical technology and presents many challenges and opportunities, it has the potential to revolutionize clinical medicine, digital health, telemedicine as well as other areas. The VCPM technology presents a viable solution that can be integrated into these systems for measuring vital parameters during video consultation, owing to its merits of contactless measurement, cost-effectiveness, user-friendly passive monitoring and the sole requirement of an off-the-shelf camera. In fact, the studies of VCPM technologies have been rocketing recently, particularly AI-based approaches, but few are employed in clinical settings. Here we provide a comprehensive overview of the applications, challenges, and prospects of VCPM from the perspective of clinical settings and AI technologies for the first time. The thorough exploration and analysis of clinical scenarios will provide profound guidance for the research and development of VCPM technologies in clinical settings.

14.
ACS Omega ; 8(44): 41232-41242, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970053

ABSTRACT

Rapid formation of the CO2 hydrate can be significantly induced by the gaseous thermodynamic promoter 1,1,1,2-tetrafluoroethane(R134a) due to the mild phase equilibrium conditions, although the formation mechanism and dynamic behavior are not clear. Therefore, a visual experimental system was developed to study the effects of different concentrations of R134a on the induction time, gas consumption, and growth morphology of the CO2 hydrate. At the same time, the combined effects under stirring and sodium dodecyl sulfate (SDS) systems were also studied. In addition, visualization and experimental model diagrams were combined to explain the fast formation mechanism of the R134a/CO2 hydrate. The results show that the CO2 hydrate average conversion rate was increased by more than 63% with the addition of mixed trace R134a(7%). A special phenomenon is found that two temperature peaks appear on the hydrate formation temperature curve, corresponding to two different stages of hydrate formation when stirring or SDS is added to the mixed gas reaction system. Furthermore, the gas consumption in stirring and SDS systems increases by 9 and 44%, respectively. Finally, it is also found that the R134a/CO2 mixed hydrate formed under the action of SDS has a "capillary" mechanism, which provides a gas-liquid phase exchange channel and a large number of nucleation sites for CO2 hydrate, thus promoting the formation of CO2 hydrate. This paper provides a novel, simple, and efficient method for CO2 hydrate gas storage technology.

15.
J Chem Phys ; 159(17)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37916595

ABSTRACT

The relocation of peripheral transistors from the front-end-of-line (FEOL) to the back-end-of-line (BEOL) in fabrication processes is of significant interest, as it allows for the introduction of novel functionality in the BEOL while providing additional die area in the FEOL. Oxide semiconductor-based transistors serve as attractive candidates for BEOL. Within these categories, In2O3 material is particularly notable; nonetheless, the excessive intrinsic carrier concentration poses a limitation on its broader applicability. Herein, the deposition of Hf-doped In2O3 (IHO) films via atomic layer deposition for the first time demonstrates an effective method for tuning the intrinsic carrier concentration, where the doping concentration plays a critical role in determine the properties of IHO films and all-oxide structure transistors with Au-free process. The all-oxide transistors with In2O3: HfO2 ratio of 10:1 exhibited optimal electrical properties, including high on-current with 249 µA, field-effect mobility of 13.4 cm2 V-1 s-1, and on/off ratio exceeding 106, and also achieved excellent stability under long time positive bias stress and negative bias stress. These findings suggest that this study not only introduces a straightforward and efficient approach to improve the properties of In2O3 material and transistors, but as well paves the way for development of all-oxide transistors and their integration into BEOL technology.

16.
Angew Chem Int Ed Engl ; 62(43): e202311336, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37670537

ABSTRACT

Rational design and engineering of high-performance molecular sieve membranes towards C2 H4 /C2 H6 and flue gas separations remain a grand challenge to date. In this study, through combining pore micro-environment engineering with meso-structure manipulation, highly c-oriented sub-100 nm-thick Cu@NH2 -MIL-125 membrane was successfully prepared. Coordinatively unsaturated Cu ions immobilized in the NH2 -MIL-125 framework enabled high-affinity π-complexation interactions with C2 H4 , resulting in an C2 H4 /C2 H6 selectivity approaching 13.6, which was 9.4 times higher than that of pristine NH2 -MIL-125 membrane; moreover, benefiting from π-complexation interactions between CO2 and Cu(I) sites, our membrane displayed superior CO2 /N2 selectivity of 43.2 with CO2 permeance of 696 GPU, which far surpassed the benchmark of other pure MOF membranes. The above multi-scale structure optimization strategy is anticipated to present opportunities for significantly enhancing the separation performance of diverse molecular sieve membranes.

17.
J Pharm Biomed Anal ; 235: 115608, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37527609

ABSTRACT

Cerebrovascular stenosis (CVS) is the main cause of ischemic stroke, which greatly threatens human life. Hence, it's important to perform early screenings for CVS. Metabolomics is an emerging omics approach that has great advantages in disease screening and diagnosis. Therefore, we aim to elucidate the correlation between CVS and metabolomics, which can aid in conducting CVS screening at an early stage. Patients with CVS in Beijing Hospital were included in the study. A total of 36 participants, including 18 patients diagnosed with CVS and 18 healthy individuals, were recruited at Beijing Hospital between May 2022 and October 2021. The serum samples were analyzed for liquid chromatography-tandem mass spectrometry (LC-MS/MS). Then, multivariate statistical methods, including principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed. Differential metabolites were obtained and demonstrated by volcano plot and heatmap. The study recruited 36 participants, including 18 patients with CVS and 18 healthy participants. A total of 150 metabolites were identified. Multivariate statistical analysis revealed significant differences between patients and healthy participants. Furthermore, 30 serum metabolites levels differed significantly between two groups. Differential metabolites were enriched in phenylalanine, tyrosine, and tryptophan biosynthesis; primary bile acid biosynthesis, and other pathways. This study identified differential metabolites in patients with CVS and elucidated the relevant metabolic pathways. Thus, these findings aid in the study of the pathogenesis of CVS and its early diagnosis. DATA AVAILABILITY STATEMENT: The datasets generated for this study are available on request to the corresponding author.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Constriction, Pathologic , Metabolomics/methods , Metabolome , Biomarkers
18.
Methods Mol Biol ; 2689: 169-177, 2023.
Article in English | MEDLINE | ID: mdl-37430054

ABSTRACT

Droplet digital polymerase chain reaction (ddPCR) is a new quantitative PCR method based on water-oil emulsion droplet technology. ddPCR enables highly sensitive and accurate quantification of nucleic acid molecules, especially when their copy numbers are low. In ddPCR, a sample is fractionated into ~20,000 droplets, and every nanoliter-sized droplet undergoes PCR amplification of the target molecule. The fluorescence signals of droplets are then recorded by an automated droplet reader. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitously expressed in animals and plants. CircRNAs are promising as biomarkers for cancer diagnosis and prognosis and as therapeutic targets or agents to inhibit oncogenic microRNAs or proteins (Kristensen LS, Jakobsen T, Hager H, Kjems J, Nat Rev Clin Oncol 19:188-206, 2022). In this chapter, the procedures for the quantitation of a circRNA in single pancreatic cancer cells using ddPCR are described.


Subject(s)
Biomarkers, Tumor , Polymerase Chain Reaction , RNA, Circular , Single-Cell Analysis , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , RNA, Circular/analysis , RNA, Circular/genetics , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Biomarkers, Tumor/analysis , Humans
19.
Adv Sci (Weinh) ; 10(24): e2301694, 2023 08.
Article in English | MEDLINE | ID: mdl-37310410

ABSTRACT

Nanozymes, featuring intrinsic biocatalytic effects and broad-spectrum antimicrobial properties, are emerging as a novel antibiotic class. However, prevailing bactericidal nanozymes face a challenging dilemma between biofilm penetration and bacterial capture capacity, significantly impeding their antibacterial efficacy. Here, this work introduces a photomodulable bactericidal nanozyme (ICG@hMnOx ), composed of a hollow virus-spiky MnOx nanozyme integrated with indocyanine green, for dually enhanced biofilm penetration and bacterial capture for photothermal-boosted catalytic therapy of bacterial infections. ICG@hMnOx demonstrates an exceptional capability to deeply penetrate biofilms, owing to its pronounced photothermal effect that disrupts the compact structure of biofilms. Simultaneously, the virus-spiky surface significantly enhances the bacterial capture capacity of ICG@hMnOx . This surface acts as a membrane-anchored generator of reactive oxygen species and a glutathione scavenger, facilitating localized photothermal-boosted catalytic bacterial disinfection. Effective treatment of methicillin-resistant Staphylococcus aureus-associated biofilm infections is achieved using ICG@hMnOx , offering an appealing strategy to overcome the longstanding trade-off between biofilm penetration and bacterial capture capacity in antibacterial nanozymes. This work presents a significant advancement in the development of nanozyme-based therapies for combating biofilm-related bacterial infections.


Subject(s)
Bacteriophages , Biofilms , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Staphylococcal Infections , Methicillin-Resistant Staphylococcus aureus/drug effects , Humans , Biofilms/drug effects , Staphylococcal Infections/drug therapy , Bacteriophages/enzymology , Nanoparticles/chemistry , Lasers
20.
Cell Death Differ ; 30(7): 1786-1798, 2023 07.
Article in English | MEDLINE | ID: mdl-37286744

ABSTRACT

The mitochondrial transmembrane (TMEM) protein family has several essential physiological functions. However, its roles in cardiomyocyte proliferation and cardiac regeneration remain unclear. Here, we detected that TMEM11 inhibits cardiomyocyte proliferation and cardiac regeneration in vitro. TMEM11 deletion enhanced cardiomyocyte proliferation and restored heart function after myocardial injury. In contrast, TMEM11-overexpression inhibited neonatal cardiomyocyte proliferation and regeneration in mouse hearts. TMEM11 directly interacted with METTL1 and enhanced m7G methylation of Atf5 mRNA, thereby increasing ATF5 expression. A TMEM11-dependent increase in ATF5 promoted the transcription of Inca1, an inhibitor of cyclin-dependent kinase interacting with cyclin A1, which suppressed cardiomyocyte proliferation. Hence, our findings revealed that TMEM11-mediated m7G methylation is involved in the regulation of cardiomyocyte proliferation, and targeting the TMEM11-METTL1-ATF5-INCA1 axis may serve as a novel therapeutic strategy for promoting cardiac repair and regeneration.


Subject(s)
Myocytes, Cardiac , Protein Processing, Post-Translational , Animals , Mice , Cell Proliferation/genetics , Methylation , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL