Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 401: 111164, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39111524

ABSTRACT

Ganoderic Acid A (GAA) has demonstrated beneficial effects in anti-inflammatory and anti-oxidative stress studies. However, it remains unknown whether GAA exerts positive impacts on bone loss induced by lipopolysaccharide (LPS). This study aims to investigate the influence of GAA on bone loss in LPS-treated rats. The study assesses changes in the viability and osteogenic potential of MC3T3-E1 cells, as well as osteoclast differentiation in RAW264.7 cells in the presence of LPS using CCK-8, ALP staining, AR staining, and Tartrate-resistant acid phosphatase (TRAP) staining. In vitro experiments indicate that LPS-induced inhibition of osteoclasts (OC) and Superoxide Dismutase 2 (SOD2) correlates with heightened levels of inflammation and oxidative stress. Furthermore, GAA has displayed the ability to alleviate oxidative stress and inflammation, enhance osteogenic differentiation, and suppress osteoclast differentiation. Animal experiment also proves that GAA notably upregulates SOD2 expression and downregulates TNF-α expression, leading to the restoration of impaired bone metabolism, improved bone strength, and increased bone mineral density. The collective experimental findings strongly suggest that GAA can enhance osteogenic activity in the presence of LPS by reducing inflammation and oxidative stress, hindering osteoclast differentiation, and mitigating bone loss in LPS-treated rat models.


Subject(s)
Cell Differentiation , Heptanoic Acids , Inflammation , Lanosterol , Lipopolysaccharides , Osteoclasts , Osteogenesis , Oxidative Stress , Rats, Sprague-Dawley , Superoxide Dismutase , Animals , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Male , Mice , Rats , RAW 264.7 Cells , Superoxide Dismutase/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Osteoclasts/drug effects , Osteoclasts/metabolism , Cell Differentiation/drug effects , Osteogenesis/drug effects , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Lanosterol/therapeutic use , Heptanoic Acids/pharmacology , Heptanoic Acids/therapeutic use , Bone Density/drug effects , Tumor Necrosis Factor-alpha/metabolism , Bone Resorption/prevention & control , Bone Resorption/drug therapy , Bone Resorption/metabolism
2.
Int Immunopharmacol ; 141: 112932, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154533

ABSTRACT

Melatonin (MEL) has shown positive effects in anti-inflammatory and anti-oxidative stress research. This study investigates whether MEL can positively impact bone loss induced by valproic acid (VPA) in rats. The study examines changes in MC3T3-E1 cell viability and osteogenic potential, along with osteoclast differentiation in RAW264.7 cells in the presence of VPA using CCK-8, ALP staining, AR staining, and TRAP staining. In vitro experiments reveal that VPA-induced inhibition of osteogenic differentiation and promotion of osteoclastic differentiation are linked to increased inflammation and oxidative stress. Furthermore, MEL has demonstrated the ability to reduce oxidative stress and inflammation, boost osteogenic differentiation, and inhibit osteoclast differentiation. Animal experiments confirm that MEL significantly increases SOD2 expression and decreases TNF-α expression, leading to the restoration of impaired bone metabolism, enhanced bone strength, and higher bone mineral density. The combined experimental results strongly suggest that MEL can enhance osteogenic activity in the presence of VPA by reducing inflammation and oxidative stress, impeding osteoclast differentiation, and alleviating bone loss in VPA-treated rat models.

SELECTION OF CITATIONS
SEARCH DETAIL