Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.266
Filter
1.
Nanotechnology ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964289

ABSTRACT

Liver cancer, which is well-known to us as one of human most prevalent malignancies across the globe, poses a significant risk to live condition and life safety of individuals in every region of the planet. It has been shown that immune checkpoint treatment may enhance survival benefits and make a significant contribution to patient prognosis, which makes it a promising and popular therapeutic option for treating liver cancer at the current time. However, there are only a very few numbers of patients who can benefit from the treatment and there also exist adverse events such as toxic effects and so on, which is still required further research and discussion. Fortunately, the clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) provides a potential strategy for immunotherapy and immune checkpoint therapy of liver cancer. In this review, we focus on elucidating the fundamentals of the recently developed CRISPR/Cas9 technology as well as the present-day landscape of immune checkpoint treatment which pertains to liver cancer. What's more, we aim to explore the molecular mechanism of immune checkpoint treatment in liver cancer based on CRISPR/Cas9 technology. At last, its encouraging and powerful potential in the future application of the clinic is discussed, along with the issues that already exist and the difficulties that must be overcome. To sum it all up, our ultimate goal is to create a fresh knowledge that we can utilize this new CRISPR/Cas9 technology for the current popular immune checkpoint therapy to overcome the treatment issues of liver cancer. .

2.
ACS Nano ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965054

ABSTRACT

Polyanionic cathodes have attracted extensive research interest for Na-ion batteries (NIBs) due to their moderate energy density and desirable cycling stability. However, these compounds suffer from visible capacity fading and significant voltage decay upon the rapid sodium storage process, even if modified through nanoengineering or carbon-coating routes, leading to limited applications in NIBs. Herein, the Na3(VOPO4)2F cathode material with dominantly exposed {001} active facets is demonstrated by a topochemical synthesis route. Owing to the rational geometrical structure design and thereby directly shortening Na diffusion distance, the electrode delivers a reversible capacity of ∼129 mA h g-1 even at a high rate of 10 C, which is very close to the theoretical capacity of 132 mA h g-1, achieving a high energy density of ∼452 W h kg-1 coupled with a high-power density of 4660 W kg-1. When further served as a cathode for nonaqueous, aqueous-based, and solid-state full NIBs, respectively, our designed Na3(VOPO4)2F always enables superior electrochemical performance due to favorable kinetics.

3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 491-496, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970524

ABSTRACT

X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy. In February 2021, a male neonate was admitted to the West China Second University Hospital, Sichuan University, with clinical manifestations of hypotonia, accompanied by distinctive facial features, and requiring continuous ventilatory support. He was born prematurely at 36+2 weeks gestation and developed respiratory distress postnatally, followed by difficulty in weaning from mechanical ventilation. Additional clinical features included hypotonia of the limbs, swallowing dysfunction, and specific facial characteristics (elongated limbs, narrow face, high-arched palate, wrist drop, empty scrotum, elongated fingers/toes). Genetic testing confirmed the diagnosis of XLMTM. Whole-exome sequencing analysis of the family revealed no mutations in the father, paternal grandfather, or paternal grandmother, while the mother had a heterozygous mutation. The pathogenic mutation was identified as MTM1 gene (OMIM: 300415), chromosome position chrX-150649714, with a nucleotide change of c.868-2A>C. The patient exhibited typical facial features. Genetic testing is crucial for accurate diagnosis of XLMTM in infants presenting with abnormal muscle tone and distinctive facial features.


Subject(s)
Mutation , Myopathies, Structural, Congenital , Protein Tyrosine Phosphatases, Non-Receptor , Humans , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/diagnosis , Male , Infant, Newborn , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Exome Sequencing , Genetic Testing , Muscle Hypotonia/genetics
4.
Brain Res Bull ; : 111027, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971477

ABSTRACT

BACKGROUND: The limited understanding of the physiology and psychology of polar expedition explorers has prompted concern over the potential cognitive impairments caused by exposure to extreme environmental conditions. Prior research has demonstrated that such stressors can negatively impact cognitive function, sleep quality, and behavioral outcomes. Nevertheless, the impact of the polar environment on neuronal activity remains largely unknown. METHODS: In this study, we aimed to investigate spatiotemporal alterations in brain oscillations of 13 individuals (age range: 22 - 48 years) who participated in an Arctic expedition. We utilized electroencephalography (EEG) to record cortical activity before and during the Arctic journey, and employed standardized low resolution brain electromagnetic tomography to localize changes in alpha, beta, theta, and gamma activity. RESULTS: Our results reveal a significant increase in the power of theta oscillations in specific regions of the Arctic, which differed significantly from pre-expedition measurements. Furthermore, microstate analysis demonstrated a significant reduction in the duration of microstates (MS) D and alterations in the local synchrony of the frontoparietal network. CONCLUSION: Overall, these findings provide novel insights into the neural mechanisms underlying adaptation to extreme environments. These findings have implications for understanding the cognitive consequences of polar exploration and may inform strategies to mitigate potential neurological risks associated with such endeavors. Further research is warranted to elucidate the long-term effects of Arctic exposure on brain function.

5.
Bioengineering (Basel) ; 11(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38927850

ABSTRACT

The application of wearable electroencephalogram (EEG) devices is growing in brain-computer interfaces (BCI) owing to their good wearability and portability. Compared with conventional devices, wearable devices typically support fewer EEG channels. Devices with few-channel EEGs have been proven to be available for steady-state visual evoked potential (SSVEP)-based BCI. However, fewer-channel EEGs can cause the BCI performance to decrease. To address this issue, an attention-based complex spectrum-convolutional neural network (atten-CCNN) is proposed in this study, which combines a CNN with a squeeze-and-excitation block and uses the spectrum of the EEG signal as the input. The proposed model was assessed on a wearable 40-class dataset and a public 12-class dataset under subject-independent and subject-dependent conditions. The results show that whether using a three-channel EEG or single-channel EEG for SSVEP identification, atten-CCNN outperformed the baseline models, indicating that the new model can effectively enhance the performance of SSVEP-BCI with few-channel EEGs. Therefore, this SSVEP identification algorithm based on a few-channel EEG is particularly suitable for use with wearable EEG devices.

6.
Front Neurol ; 15: 1370398, 2024.
Article in English | MEDLINE | ID: mdl-38919971

ABSTRACT

Objective: To investigate the central mechanism of lumbar disc herniation in patients with chronic low back pain (LDHCP) using resting-state functional magnetic resonance imaging (rs-fMRI) utilizing the Degree Centrality (DC) method. Methods: Twenty-five LDHCP and twenty-two healthy controls (HCs) were enrolled, and rs-fMRI data from their brains were collected. We compared whole-brain DC values between the LDHCP and HC groups, and examined correlations between DC values within the LDHCP group and the Visual Analogue Score (VAS), Oswestry Dysfunction Index (ODI), and disease duration. Diagnostic efficacy was evaluated using receiver operating characteristic (ROC) curve analysis. Results: LDHCP patients exhibited increased DC values in the bilateral cerebellum and brainstem, whereas decreased DC values were noted in the left middle temporal gyrus and right post-central gyrus when compared with HCs. The DC values of the left middle temporal gyrus were positively correlated with VAS (r = 0.416, p = 0.039) and ODI (r = 0.405, p = 0.045), whereas there was no correlation with disease duration (p > 0.05). Other brain regions showed no significant correlations with VAS, ODI, or disease duration (p > 0.05). Furthermore, the results obtained from ROC curve analysis demonstrated that the Area Under the Curve (AUC) for the left middle temporal gyrus was 0.929. Conclusion: The findings indicated local abnormalities in spontaneous neural activity and functional connectivity in the bilateral cerebellum, bilateral brainstem, left middle temporal gyrus, and right postcentral gyrus among LDHCP patients.

7.
Orthop Nurs ; 43(3): 163-178, 2024.
Article in English | MEDLINE | ID: mdl-38861747

ABSTRACT

Despite significant advancements in surgical instruments and operation skills, short- and long-term outcomes following anterior cruciate ligament reconstruction (ACLR) remain unsatisfactory, as many patients fail to return to their pre-injury level of sports. Inadequate ACL rehabilitation is the primary cause of poor outcomes. Nurses have become a crucial element in the rehabilitation process. Although there is no consensus regarding the optimal post-operative rehabilitation protocols, restoring muscle strength and neuromuscular control are consistently the primary goals. This literature review presents nurse-assisted rehabilitation protocols aiming at improving muscle strength and neuromuscular control. The review discusses postoperative rehabilitation, including home-based and supervised rehabilitation, open and closed kinetic chain exercises, eccentric and concentric training, blood flow restriction training, and plyometric training. Each training protocol has its benefits and drawbacks, and should be used cautiously in specific stages of rehabilitation. Neuromuscular training, such as neuromuscular electrical stimulation, neuromuscular control exercises, and vibration therapy, is considered crucial in rehabilitation.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Humans , Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament Reconstruction/rehabilitation , Muscle Strength/physiology , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/rehabilitation , Exercise Therapy/methods
8.
Food Chem ; 455: 139679, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38823125

ABSTRACT

This study involved the preparation of nanoparticles by combining oxidized starch (OS) with xanthan gum (XG), and emulsions were prepared from this nanoparticle. The physical and chemical characteristics, as well as the emulsification properties of oxidized starch-xanthan gum composite nanoparticles (OGNP), were analyzed. The findings revealed that the OGNP retained spherical shape after the addition of XG, although their diameter increased from approximately 50-150 to 200-400 nm. Zeta potential decreased with XG content. Moreover, emulsions prepared from OGNP exhibited outstanding thermal stability, also showing enhanced storage stability. In addition, emulsions had different rheological properties at different pH values. The apparent viscosity and shear stress of emulsions under alkaline conditions were lower than that of neutral conditions. NaCl increased the apparent viscosity of OGNP-stabilized emulsions while reducing their thermal stability. The nanoparticles prepared in this study have efficient emulsification properties and can extend the application of OS.

10.
Int J Biol Markers ; : 3936155241261390, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881381

ABSTRACT

PURPOSE: Gastric cancer is the most common malignancy worldwide and is the third leading cause of cancer-related deaths, urgently requiring an early and non-invasive diagnosis. Circulating extracellular vesicles may emerge as promising biomarkers for the rapid diagnosis in a non-invasive manner. METHODS: Using high-throughput small RNA sequencing, we profiled the small RNA population of serum-derived extracellular vesicles from healthy controls and gastric cancer patients. Differentially expressed microRNAs (miRNAs) were randomly selected and validated by reverse transcription-quantitative real-time polymerase chain reaction. Receiver operating characteristic curves were employed to assess the predictive value of miRNAs for gastric cancer. RESULTS: In this study, 193 differentially expressed miRNAs were identified, of which 152 were upregulated and 41 were significantly downregulated. Among the differently expressed miRNA, the expression levels of miR-21-5p, miR-26a-5p, and miR-27a-3p were significantly elevated in serum-derived extracellular vesicles of gastric cancer patients. The miR-21-5p and miR-27a-3p were closely correlated with the tumor size. Moreover, the expression levels of serum miR-21-5p and miR-26a-5p were significantly decreased in gastric cancer patients after surgery. CONCLUSIONS: The present study discovered the potential of serum miR-21-5p and miR-26a-5p as promising candidates for the diagnostic and prognostic markers of gastric cancer.

11.
Ying Yong Sheng Tai Xue Bao ; 35(4): 951-960, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884230

ABSTRACT

Precipitation in the plum rain period accounts for 40%-50% of annual precipitation in the monsoon region. To clarify the temporal variability of the isotopic composition of precipitation during the plum rain period from event to interannual time scale and identify the influencing factors, we analyzed the isotopic composition of precipitation and its influencing factors in Nanjing from 2015 to 2022. By using the Hybrid Single-particle Lagran-gian Integrated Trajectory (HYSPLIT) model with specific humidity analysis, we investigated the water vapor source and influencing factors. The results showed that 1) the isotopic abundance of atmospheric precipitation was depleted in the summer and enriched in winter. dx was lower in summer and higher in winter. The isotopic abundance of precipitation from the plum rain was depleted compared to mean value of the whole-year. 2) There was no significant correlation between δ2H and δ18O of the plum rain (precipitation) with local meteorological factors. However, dx was lower in light rain, reflecting the effect of sub-cloud evaporation. The average dx was higher during plum rain period in years with more total plum rain precipitation. 3) The low-latitude South China Sea and the western Pacific Ocean source area provided water vapor for the plum rain. The shift of moisture source region led to abrupt changes in precipitation isotopes. Our results could provide data support for studies on precipitation isotopes in the monsoon region, as well as a reference point for further understanding the precipitation mechanism of the plum rain and stu-dying the seasonal variability of atmospheric circulation in the East Asian monsoon region.


Subject(s)
Rain , Seasons , Rain/chemistry , China , Oxygen Isotopes/analysis , Environmental Monitoring/methods , Deuterium/analysis , Isotopes/analysis , Prunus domestica/chemistry , Prunus domestica/growth & development
12.
Int Immunopharmacol ; 137: 112500, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889511

ABSTRACT

Toll-like receptor 4 (TLR4) acts as a double-edged sword in the occurrence and development of periodontitis. While the activation of TLR4 in macrophages aids in clearing local pathogens, it can also disrupt innate immune responses, upsetting microecological balance and accelerating the destruction of periodontal bone tissues. To date, the effects of TLR4 on osteogenesis and osteoclastogenesis in periodontitis have not been comprehensively studied. In this study, we investigated the development of periodontitis in the Tlr4-/- mice by ligating their second molars with silk threads. Compared to wild-type (WT) mice, Tlr4-/- mice demonstrated increased resistance to periodontitis-associated bone destruction, as evidenced by decreased bone resorption and enhanced bone regeneration. Mechanistically, the deletion of Tlr4 not only inhibited osteoclast formation by reducing the expression of NFATc1, CTSK and TRAP, but also enhanced osteogenic abilities through increased expression of OCN, OPN and RUNX2. In conclusion, TLR4 tips the balance of osteoclastogenesis and osteogenesis, thereby promoting periodontal bone destruction in periodontitis.

13.
Int J Pharm ; 660: 124349, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885778

ABSTRACT

The clinical application of doxorubicin (DOX) is mainly restricted by its serious side effects, poor drug delivery efficiency, and limited immunogenic death (ICD) effect. To improve DOX-based chemotherapy and ameliorate its adverse effects, we utilized 3LL cell-derived extracellular vesicles to encapsulate DOX and sodium nitroprusside (SNP) to obtain DOX/SNP@CM, which could effectively target the tumor site by harnessing the inherent homologous targeting property of tumor cell membranes. DOX performed its role on chemotherapy, and SNP successfully respond to the intracellular GSH to continuously generate nitric oxide (NO). The in situ-produced NO upregulated the Fas expression on the tumor cell surface, thereby sensitizing the Fas/FasL pathway-mediated tumor cell apoptosis of DOX. Furthermore, NO also boosted the intratumoral infiltration of cytotoxic T cells by promoted ICD effect towards tumor cells. Importantly, the anti-tumor immunity tightly cooperated with Fas/FasL mediated tumor cell apoptosis by NO-mediated manipulation on Fas/FasL interaction, collectively making DOX/SNP@CM exert significant tumor growth inhibition with low-dose DOX. Remarkably, DOX and SNP both are widely used clinical medicines, ensuring DOX/SNP@CM a potential opportunity for future practical applications.

14.
Neurosurgery ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899888

ABSTRACT

BACKGROUND AND OBJECTIVES: Treatment selection for brain arteriovenous malformations (BAVMs) is complicated by BAVM size, location, and hemodynamics. Quantitative digital subtraction angiography is used to quantify the hemodynamic impact of BAVMs on cerebral circulation. This study investigated the association between cerebral circulation time and the complete obliteration (CO) rate of BAVMs after stereotactic radiosurgery (SRS). METHODS: We analyzed the data of 143 patients who underwent SRS for BAVMs between January 2011 and December 2019 in our institute. Their pre-SRS magnetic resonance imaging and angiography images were analyzed to acquire BAVM characteristics and quantitative digital subtraction angiography parameters. Modified cerebral circulation time (mCCT) was defined as the time difference between the bolus arrival time of the ipsilateral cavernous internal carotid artery and that of the parietal vein, as determined from the lateral view of images obtained using digital subtraction angiography. Cox regression with hazard ratios and Kaplan-Meier analyses were conducted to determine the associations between the parameters and BAVM CO after SRS. RESULTS: Of the 143 patients, 101 (70.6%) achieved BAVM CO. According to the multivariate analyses, an increased mCCT (hazard ratio: 1.24, P = .041) was the independent factor associated with BAVM CO after adjustment for age, sex, hemorrhagic presentation, a BAVM volume of >5 cm3, and a margin dose of >18 Gy. Individuals with an mCCT of ≤2.32 s had a lower 36-month probability of BAVM CO than did those with an mCCT of >2.32 s (44.1% ± 6.8% vs 63.3% ± 5.6%, P = .034). CONCLUSION: The hemodynamic impact of high-flow BAVM demonstrated by a shortened mCCT is associated with a lower BAVM CO rate after SRS.

15.
Cogn Neurodyn ; 18(3): 1119-1133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826662

ABSTRACT

Myoelectric hand prostheses are effective tools for upper limb amputees to regain hand functions. Much progress has been made with pattern recognition algorithms to recognize surface electromyography (sEMG) patterns, but few attentions was placed on the amputees' motor learning process. Many potential myoelectric prostheses users could not fully master the control or had declined performance over time. It is possible that learning to produce distinct and consistent muscle activation patterns with the residual limb could help amputees better control the myoelectric prosthesis. In this study, we observed longitudinal effect of motor skill learning with 2 amputees who have developed alternative muscle activation patterns in response to the same set of target prosthetic actions. During a 10-week program, amputee participants were trained to produce distinct and constant muscle activations with visual feedback of live sEMG and without interaction with prosthesis. At the end, their sEMG patterns were different from each other and from non-amputee control groups. For certain intended hand motion, gradually reducing root mean square (RMS) variance was observed. The learning effect was also assessed with a CNN-LSTM mixture classifier designed for mobile sEMG pattern recognition. The classification accuracy had a rising trend over time, implicating potential performance improvement of myoelectric prosthesis control. A follow-up session took place 6 months after the program and showed lasting effect of the motor skill learning in terms of sEMG pattern classification accuracy. The results indicated that with proper feedback training, amputees could learn unique muscle activation patterns that allow them to trigger intended prosthesis functions, and the original motor control scheme is updated. The effect of such motor skill learning could help to improve myoelectric prosthetic control performance.

16.
ACS Omega ; 9(22): 23649-23661, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854511

ABSTRACT

The propagation pattern of pressure drawdown effectively reflects the recoverable reserves range around the gas well and serves as a crucial basis for development strategies. However, it is not easy to detect the pressure propagation boundary near the producing well, especially in low-permeability reservoirs where the drainage radius is small. Physical simulation experiments can serve as a crucial method as the whole pressure profile and gas rate can be obtained in real time. Using long core plugs with permeabilities of 2.300 mD, 0.486 mD, and 0.046 mD, physical simulation experiments were carried out under varying initial water saturation (Swi) conditions of 0%, 20%, 40%, and 55% to observe the dynamic variations in pressure profiles of the core plugs during pressure depletion. Based on the material balance equation and pressure profile characteristics of the core plugs, a method for evaluating recoverable reserves within a well-spacing radius through laboratory experiments was proposed and performed. Mechanism analysis was conducted based on mercury injection tests, and suggestions for enhancing gas recovery were presented. Research findings indicate that lower permeability, higher initial water saturation, and higher abandonment gas rates result in reduced reserve utilization range and degree. Under abandoned gas rate conditions, for type I and II rocks, the pore radius is primarily distributed between 0.1 and 1 µm, the pressure drawdown can reach the well-spacing radius of 600 m, and the ultimate recovery efficiencies are more than 70.6%. For type III rocks, the pore radius mainly falls below 0.1 µm, the drainage radius is smaller than 10 m with Swi greater than 40%, and the ultimate recovery is below 10%. This paper provides an experimental method for recoverable reserves evaluation while formulating gas reservoir development strategies before well testing.

17.
Small ; : e2309625, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850183

ABSTRACT

Composite materials have occupied a reliable position in electrochemical energy storage and conversion due to their double electric layer and pseudocapacitance. In this work, a leaf-like heterostructure composite, obtained by peeling - carbonizing - in situ sulfuration/oxidation approach for the first time, is investigated as electrode material for electrochemical capacitance behavior. The thin and highly active transition metal WS2 acts as an energetic "blade" to trap free ions, which are then transported across the material through a strong "tendon skeleton" WO3. The derived carbon PPC with a large aspect ratio holds up the overall leaf structure, also as a "warehouse" for ion storage, thus enhancing the conductivity and wettability of the material. The above three (WS2+WO3+PPC) synergistically provide outstanding double-layer capacitance and pseudocapacitance. In particular, the vacancy defects, constructed at the heterogenous interface from WS2-WO3 in situ growth, can still achieve superior ion absorption/desorption ability even under large current density and high concentration brackish solution.

18.
Neural Netw ; 178: 106410, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38850634

ABSTRACT

Fine-tuning pre-trained language models (LMs) may not always be the most practical approach for downstream tasks. While adaptation fine-tuning methods have shown promising results, a clearer explanation of their mechanisms and further inhibition of the transmission of information is needed. To address this, we propose an Inhibition Adaptation (InA) fine-tuning method that aims to reduce the number of added tunable weights and appropriately reweight knowledge derived from pre-trained LMs. The InA method involves (1) inserting a small trainable vector into each Transformer attention architecture and (2) setting a threshold to directly eliminate irrelevant knowledge. This approach draws inspiration from the shunting inhibition, which allows the inhibition of specific neurons to gate other functional neurons. With the inhibition mechanism, InA achieves competitive or even superior performance compared to other fine-tuning methods on BERT-large, RoBERTa-large, and DeBERTa-large for text classification and question-answering tasks.

19.
Transl Oncol ; 47: 102007, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906065

ABSTRACT

BACKGROUND: Radiation-induced lung injury (RILI) is a serious complication of radiation therapy, and it is mediated by long non-coding RNAs (lncRNAs). STUDY DESIGN AND METHODS: Mouse lung tissues were examined using RNA-Seq and RNA-Seq libraries 72 h after the administration of 6 Gy of X-ray irradiation. The target mRNAs were functionally annotated and the target lncRNA-based miRNAs and target miRNA-based mRNAs were predicted after irradiation to establish the lncRNA-miRNA-mRNA ceRNA axis. RESULTS: The analyses showed that relative to unirradiated controls, 323 mRNAs, 114 miRNAs, and 472 lncRNAs were significantly up-regulated following irradiation, whereas 1907 mRNAs, 77 miRNAs, and 1572 lncRNAs were significantly down-regulated following irradiation. Voltage-gated ion channels, trans-membrane receptor protein tyrosine kinases, and vascular endothelial growth factor have all been associated with dysregulated miRNA-mRNA relationships. KEGG pathway analysis of the dysregulated miRNA-mRNA targets revealed involvement in pathways associated with the hedgehog signaling pathway-fly, ErbB signaling, VEGF signaling, axon guidance, and focal adhesion. KEGG analysis of differentially expressed showed enrichment of mRNAs in primary immunodeficiency, the intestinal immune axis for IgA production, hematopoietic cell lineages, systemic lupus erythematosus, and Th1 and Th2 cell differentiation. Finally, the ceRNA network revealed that BNIP1 was a critical mRNA modulated by the most significant upregulation of lncRNA E230013L22Rik. CONCLUSION: In summary, the lncRNA-miRNA-mRNA ceRNA axis of RILI was constructed following irradiation in a mouse model. RNA dysregulation in the early stage of RILI may lead to severe complications at a later stage, with BNIP1 contributing to radiation-induced cellular apoptosis in RILI.

20.
Mater Horiz ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895768

ABSTRACT

Birnessite has been regarded as a promising cathode material for aqueous zinc-ion batteries (ZIBs), but severe Jahn-Teller distortion and abrupt lattice collapse at deep charged states lead to serious problems such as poor capacity retention and short cycle life, which severely impede its practical applications. We herein report the construction of an advanced layered Fe-doped Na0.55Mn2O4·xH2O (Fe-NMO·xH2O) cathode to promote zinc-ion storage performance and electrochemical stability. An outstanding capacity of 102 mA h g-1 at a high current density of 20 A g-1 and a long cycle life of 6000 cycles have been achieved, comparable to the state-of-the-art manganese oxide-based cathodes. Both experimental measurements and theoretical calculations reveal that Fe3+ substitution and lattice water cooperatively stabilize the interlayer structure, accelerate zinc-ion diffusion, and improve electronic conductivity. Notably, Fe doping is conducive to alleviating the Jahn-Teller effect and locking lattice water, which effectively prevents phase transformation and lattice collapse during the (de)intercalation process. This work sheds light on the synergistic interplay between dopants and structural water in zinc-ion storage and demonstrates instructive strategies to regulate layered structures for ZIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...