Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.027
Filter
1.
Small ; : e2402761, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953299

ABSTRACT

Flexible rechargeable Zn-air batteries (FZABs) exhibit high energy density, ultra-thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has become one of the key factors restricting the development of FZABs. The improvement of activity and stability of bifunctional catalysts has become a top priority. At the same time, FZABs should maintain the battery performance under different bending and twisting conditions, and the design of the overall structure of FZABs is also important. Based on the understanding of the three typical configurations and working principles of FZABs, this work highlights two common strategies for applying bifunctional catalysts to FZABs: 1) powder-based flexible air cathode and 2) flexible self-supported air cathode. It summarizes the recent advances in bifunctional oxygen electrocatalysts and explores the various types of catalyst structures as well as the related mechanistic understanding. Based on the latest catalyst research advances, this paper introduces and discusses various structure modulation strategies and expects to guide the synthesis and preparation of efficient bifunctional catalysts. Finally, the current status and challenges of bifunctional catalyst research in FZABs are summarized.

2.
BMC Musculoskelet Disord ; 25(1): 511, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961407

ABSTRACT

BACKGROUND: Decreased strength and increased stiffness of the quadriceps have been associated with a higher risk of developing knee osteoarthritis (OA) in elders. Dynamic joint stiffness (DJS) represents collective resistance from active and passive knee structures for dynamic knee motions. Elevated sagittal knee DJS has been associated with worsening of cartilage loss in knee OA patients. Altered quadriceps properties may affect DJS, which could be a mediator for associations between quadriceps properties and knee OA. Hence, this study aimed to examine whether DJS and quadriceps properties would be associated with the development of clinical knee OA over 24 months, and to explore the mediation role of DJS in associations between quadriceps properties and knee OA. METHODS: This was a prospective cohort study with 162 healthy community-dwelling elders. Gait analysis was conducted to compute DJS during the loading response phase. Quadriceps strength and stiffness were evaluated using a Cybex dynamometer and shear-wave ultrasound elastography, respectively. Knee OA was defined based on clinical criteria 24 months later. Logistic regression with generalized estimating equations was used to examine the association between quadriceps properties and DJS and incident knee OA. Mediation analysis was performed to explore the mediation role of DJS in associations between quadriceps properties and the incidence of knee OA. RESULTS: A total of 125 participants (65.6 ± 4.0 years, 58.4% females) completed the 24-month follow-up, with 36 out of 250 knees identified as clinical knee OA. Higher DJS (OR = 1.86, 95%CI: 1.33-2.62), lower quadriceps strength (1.85, 1.05-3.23), and greater quadriceps stiffness (1.56, 1.10-2.21) were significantly associated with a higher risk of clinical knee OA. Mediation analysis showed that the DJS was not a significant mediator for the associations between quadriceps properties and knee OA. CONCLUSIONS: Higher sagittal knee dynamic joint stiffness, lower quadriceps strength, and greater quadriceps stiffness are potential risk factors for developing clinical knee OA in asymptomatic elders. Associations between quadriceps properties and knee OA may not be mediated by dynamic joint stiffness. Interventions for reducing increased passive properties of the quadriceps and knee joint stiffness may be beneficial for maintaining healthy knees in the aging population.


Subject(s)
Gait , Muscle Strength , Osteoarthritis, Knee , Quadriceps Muscle , Humans , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/epidemiology , Female , Male , Quadriceps Muscle/physiopathology , Quadriceps Muscle/diagnostic imaging , Aged , Prospective Studies , Incidence , Gait/physiology , Mediation Analysis , Knee Joint/physiopathology , Middle Aged , Cohort Studies , Elasticity Imaging Techniques
3.
Free Radic Biol Med ; 222: 456-466, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950659

ABSTRACT

Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.

4.
Adv Healthc Mater ; : e2401345, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973206

ABSTRACT

The limited and unstable absorption of excess exudate is a major challenge during the healing of infected wounds. In this study, a highly stable, multifunctional Janus dressing with unidirectional exudate transfer capacity is fabricated based on a single poly(lactide caprolactone) (PLCL). The success of this method relies on an acid hydrolysis reaction that transforms PLCL fibers from hydrophobic to hydrophilic in situ. The resulting interfacial affinity between the hydrophilic/phobic PLCL fibers endows the Janus structure with excellent unidirectional liquid transfer and high structural stability against repeated stretching, bending, and twisting. Various other functions, including wound status detection, antibacterial, antioxidant, and anti-inflammatory properties, are also integrated into the dressing by incorporating phenol red and epigallocatechin gallate. An in vivo methicillin-resistant Staphylococcus aureus-infected wound model confirms that the Janus dressing, with the capability to remove exudate from the infected site, not only facilitates epithelialization and collagen deposition, but also ensures low inflammation and high angiogenesis, thus reaching an ideal closure rate up to 98.4% on day 14. The simple structure, multiple functions, and easy fabrication of the dressing may offer a promising strategy for treating chronic wounds, rooted in the challenges of bacterial infection, excessive exudate, and persistent inflammation.

5.
World J Gastroenterol ; 30(22): 2839-2842, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38947289

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most prevalent chronic liver condition worldwide. Current liver enzyme-based screening methods have limitations that may missed diagnoses and treatment delays. Regarding Chen et al, the risk of developing MAFLD remains elevated even when alanine aminotransferase levels fall within the normal range. Therefore, there is an urgent need for advanced diagnostic techniques and updated algorithms to enhance the accuracy of MAFLD diagnosis and enable early intervention. This paper proposes two potential screening methods for identifying individuals who may be at risk of developing MAFLD: Lowering these thresholds and promoting the use of noninvasive liver fibrosis scores.


Subject(s)
Liver , Mass Screening , Non-alcoholic Fatty Liver Disease , Humans , Liver/pathology , Liver/enzymology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Mass Screening/methods , Alanine Transaminase/blood , Algorithms , Biomarkers/blood , Liver Cirrhosis/diagnosis , Liver Cirrhosis/blood , Risk Factors , Early Diagnosis
6.
Heliyon ; 10(11): e32292, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947440

ABSTRACT

Museums are critical in safeguarding cultural heritage and cultivating community educational opportunities. This research aims to evaluate operational efficiency (OE), the impact of technological change on total factor productivity change (TFPC), and the regional heterogeneity of museum performance in three regions and 31 provinces across China. To this end, the study employed DEA-SBM and the Malmquist Productivity Index to gauge OE, TFPC, and determinants of TFPC (efficiency change or emerging technologies change) across 31 provinces for 2012-2021. Results reveal that the average OE of the Chinese Museum is 0.8394. It shows a 16.06 % growth potential in the operational efficiency of Chinese Museums. Further, the OE of Chinese Museums declined over the study period from 0.8965 in 2012 to 0.8088 in 2021. Beijing, Fujian, and Hunan are ranked top with a Museum's OE Score of 1. The average MI score of Chinese Museums is 0.9744, and technology change is the main determinant of Decline in productivity change as EC = 0.9992 is greater than TC = 0.9846. The MI of Liaoning, Shanghai, Ningxia, Jiangxi, Chongqing, Sichuan, Guangdong, and Tianjin is over 1, indicating growth in total factor productivity over the study period. The eastern region of China shows higher operational efficiency and total factor productivity scores of museums than the central and western regions. The results of the Kruskal-Wallis test proved that a statistically significant difference exists among different regions of China for the OE, MI, EC, and TC of museums.

7.
J Transl Med ; 22(1): 600, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937794

ABSTRACT

BACKGROUND: Interstitial lung disease (ILD) is the primary cause of mortality in systemic sclerosis (SSc), an autoimmune disease characterized by tissue fibrosis. SSc-related ILD (SSc-ILD) occurs more frequently in females aged 30-55 years, whereas idiopathic pulmonary fibrosis (IPF) is more prevalent in males aged 60-75 years. SSc-ILD occurs earlier than IPF and progresses rapidly. FCN1, FABP4, and SPP1 macrophages are involved in the pathogenesis of lung fibrosis; SPP1 macrophages demonstrate upregulated expression in both SSc-ILD and IPF. To identify the differences between SSc-ILD and IPF using single-cell analysis, clarify their distinct pathogeneses, and propose directions for prevention and treatment. METHODS: We performed single-cell RNA sequencing on NCBI Gene Expression Omnibus (GEO) databases GSE159354 and GSE212109, and analyzed lung tissue samples across healthy controls, IPF, and SSc-ILD. The primary measures were the filtered genes integrated with batch correction and annotated cell types for distinguishing patients with SSc-ILD from healthy controls. We proposed an SSc-ILD pathogenesis using cell-cell interaction inferences, and predicted transcription factors regulating target genes using SCENIC. Drug target prediction of the TF gene was performed using Drug Bank Online. RESULTS: A subset of macrophages activates the MAPK signaling pathway under oxidative stress. Owing to the lack of inhibitory feedback from ANNEXIN and the autoimmune characteristics, this leads to an earlier onset of lung fibrosis compared to IPF. During initial lung injury, fibroblasts begin to activate the IL6 pathway under the influence of SPP1 alveolar macrophages, but IL6 appears unrelated to other inflammatory and immune cells. This may explain why tocilizumab (an anti-IL6-receptor antibody) only preserves lung function in patients with early SSc-ILD. Finally, we identified BCLAF1 and NFE2L2 as influencers of MAPK activation in macrophages. Metformin downregulates NFE2L2 and could serve as a repurposed drug candidate. CONCLUSIONS: SPP1 alveolar macrophages play a role in the profibrotic activity of IPF and SSc-ILD. However, SSc-ILD is influenced by autoimmunity and oxidative stress, leading to the continuous activation of MAPK in macrophages. This may result in an earlier onset of lung fibrosis than in IPF. Such differences could serve as potential research directions for early prevention and treatment.


Subject(s)
Lung Diseases, Interstitial , Macrophages , Scleroderma, Systemic , Humans , Scleroderma, Systemic/complications , Scleroderma, Systemic/pathology , Scleroderma, Systemic/genetics , Macrophages/metabolism , Lung Diseases, Interstitial/complications , Female , Male , Middle Aged , Adult , Idiopathic Pulmonary Fibrosis/complications , Idiopathic Pulmonary Fibrosis/pathology , Aged , Gene Expression Regulation , Single-Cell Analysis , Lung/pathology
8.
Sci Bull (Beijing) ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38945751

ABSTRACT

Interlayer twist evokes revolutionary changes to the optical and electronic properties of twisted bilayer graphene (TBG) for electronics, photonics and optoelectronics. Although the ground state responses in TBG have been vastly and clearly studied, the dynamic process of its photoexcited carrier states mainly remains elusive. Here, we unveil the photoexcited hot carrier dynamics in TBG by time-resolved ultrafast photoluminescence (PL) autocorrelation spectroscopy. We demonstrate the unconventional ultrafast PL emission between the van Hove singularities (VHSs) with a ∼4 times prolonged relaxation lifetime. This intriguing photoexcited carrier behavior is ascribed to the abnormal hot carrier thermalization brought by bottleneck effects at VHSs and interlayer charge distribution process. Our study on hot carrier dynamics in TBG offers new insights into the excited states and correlated physics of graphene twistronics systems.

9.
J Hazard Mater ; 475: 134795, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38878427

ABSTRACT

Functionalization of graphene enables precise control over interlayer spacing during film formation, thereby enhancing the separation efficiency of radioactive ions in graphene membranes. However, the systematic impact of interlayer spacing of graphene membranes on radioactive-ion separation remains unexplored. This study aims to elucidate how interlayer spacing in functionalized graphene membranes affects the separation of radioactive ions. Utilizing polyamidoxime (PAO) to modify graphene oxide, we controlled the interlayer spacing of graphene membranes. Experimental results indicate that tuning interlayer spacing enables control of the permeation flux of radioactive ions (UO22+ 1.01 × 10-5-8.32 × 10-5 mol/m2·h, and K+ remains stable at 3.60 × 10-4 mol/m2·h), and the K+/UO22+ separation factors up to 36.2 at an interlayer spacing of 8.8 Å. Using density functional theory and molecular dynamics simulations, we discovered that the effective separation is mainly determined via interlayer spacing and the quantity of introduced functional groups, explaining the anomalous high permeation flux of target ions at low interlayer spacing (4.3 Å). This study deepens our comprehension of interlayer spacing within nanoconfined spaces for ion separation and recovery via graphene membranes, offering valuable insights for the design and synthesis of high-performance nanomembrane materials.

11.
Nat Nanotechnol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844662

ABSTRACT

Nanomaterials with a large chiroptical response and high structural stability are desirable for advanced miniaturized optical and optoelectronic applications. One-dimensional (1D) nanotubes are robust crystals with inherent and continuously tunable chiral geometries. However, their chiroptical response is typically weak and hard to control, due to the diverse structures of the coaxial tubes. Here we demonstrate that as-grown multiwalled boron nitride nanotubes (BNNTs), featuring coherent-stacking structures including near monochirality, homo-handedness and unipolarity among the component tubes, exhibit a scalable nonlinear chiroptical response. This intrinsic architecture produces a strong nonlinear optical response in individual multiwalled BNNTs, enabling second-harmonic generation (SHG) with a conversion efficiency up to 0.01% and output power at the microwatt level-both excellent figures of merit in the 1D nanomaterials family. We further show that the rich chirality of the nanotubes introduces a controllable nonlinear geometric phase, producing a chirality-dependent SHG circular dichroism with values of -0.7 to +0.7. We envision that our 1D chiral platform will enable novel functions in compact nonlinear light sources and modulators.

12.
Br J Clin Pharmacol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845212

ABSTRACT

AIMS: Although there are various model-based approaches to individualized vancomycin (VCM) administration, few have been reported for adult patients with periprosthetic joint infection (PJI). This work attempted to develop a machine learning (ML)-based model for predicting VCM trough concentration in adult PJI patients. METHODS: The dataset of 287 VCM trough concentrations from 130 adult PJI patients was split into a training set (229) and a testing set (58) at a ratio of 8:2, and an independent external 32 concentrations were collected as a validation set. A total of 13 covariates and the target variable (VCM trough concentration) were included in the dataset. A covariate model was respectively constructed by support vector regression, random forest regression and gradient boosted regression trees and interpreted by SHapley Additive exPlanation (SHAP). RESULTS: The SHAP plots visualized the weight of the covariates in the models, with estimated glomerular filtration rate and VCM daily dose as the 2 most important factors, which were adopted for the model construction. Random forest regression was the optimal ML algorithm with a relative accuracy of 82.8% and absolute accuracy of 67.2% (R2 =.61, mean absolute error = 2.4, mean square error = 10.1), and its prediction performance was verified in the validation set. CONCLUSION: The proposed ML-based model can satisfactorily predict the VCM trough concentration in adult PJI patients. Its construction can be facilitated with only 2 clinical parameters (estimated glomerular filtration rate and VCM daily dose), and prediction accuracy can be rationalized by SHAP values, which highlights a profound practical value for clinical dosing guidance and timely treatment.

13.
Int Immunopharmacol ; 137: 112442, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889508

ABSTRACT

Liver disease ranks as the eleventh leading cause of mortality, leading to approximately 2 million deaths annually worldwide. Neutrophils are a type of immune cell that are abundant in peripheral blood and play a vital role in innate immunity by quickly reaching the site of liver injury. They exert their influence on liver diseases through autocrine, paracrine, and immunomodulatory mechanisms. Extracellular vesicles, phospholipid bilayer vesicles, transport a variety of substances, such as proteins, nucleic acids, lipids, and pathogenic factors, for intercellular communication. They regulate cell communication and perform their functions by delivering biological information. Current research has revealed the involvement of the interaction between neutrophils and extracellular vesicles in the pathogenesis of liver disease. Moreover, more research has focused on targeting neutrophils as a therapeutic strategy to attenuate disease progression. Therefore, this article summarizes the roles of neutrophils, extracellular vesicles, and their interactions in noncancerous liver diseases.

14.
Molecules ; 29(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893442

ABSTRACT

Incorporating two organic ligands with different functionalities into a titanium-oxo cluster entity simultaneously can endow the material with their respective properties and provide synergistic performance enhancement, which is of great significance for enriching the structure and properties of titanium-oxo clusters (TOCs). However, the synthesis of such TOCs is highly challenging. In this work, we successfully synthesized a TBC4A-functionalized TOC, [Ti2(TBC4A)2(MeO)2] (Ti2; MeOH = methanol, TBC4A = tert-butylcalix[4]arene). By adjusting the solvent system, we successfully introduced 1,10-phenanthroline (Phen) and prepared TBC4A and Phen co-protected [Ti2(TBC4A)2(Phen)2] (Ti2-Phen). Moreover, when Phen was replaced with bulky 4,7-diphenyl-1,10-phenanthroline (Bphen), [Ti2(TBC4A)2(Bphen)2] (Ti2-Bphen), which is isostructural with Ti2-Phen, was obtained, demonstrating the generality of the synthetic method. Remarkably, Ti2-Phen demonstrates good stability and stronger light absorption, as well as superior photoelectric performance compared to Ti2. Density functional theory (DFT) calculations reveal that there exists ligand-to-core charge transfer (LCCT) in Ti2, while an unusual ligand-to-ligand charge transfer (LLCT) is present in Ti2-Phen, accompanied by partial LCCT. Therefore, the superior light absorption and photoelectric properties of Ti2-Phen are attributed to the existence of the unusual LLCT phenomenon. This study not only deeply explores the influence of Phen on the performance of the material but also provides a reference for the preparation of materials with excellent photoelectric performance.

15.
Materials (Basel) ; 17(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893884

ABSTRACT

One of the most effective strategies for modifying the surface properties of nano-fillers and enhancing their composite characteristics is through polymer grafting. In this study, a coprecipitation method was employed to modify hydroxyapatite (HAP) with epoxidized soybean oleic acid (ESOA), resulting in ESOA-HAP. Subsequently, oligomeric poly(lactic acid) (OPLA) was grafted onto the surface of ESOA-HAP, yielding OPLA-ESOA-HAP. HAP, ESOA-HAP, and OPLA-ESOA-HAP were comprehensively characterized. The results demonstrate the progressive grafting of ESOA and OPLA onto the surface of HAP, resulting in enhanced hydrophobicity and improved dispersity in organic solvent for OPLA-ESOA-HAP compared to HAP. The vitality and adhesion of Wistar rat mesenchymal stem cells (MSCs) were assessed using HAP and modified HAP materials. Following culture with MSCs for 72 h, the OPLA-ESOA-HAP showed an inhibition rate lower than 23.0% at a relatively high concentration (1.0 mg/mL), which is three times lower compared to HAP under similar condition. The cell number for OPLA-ESOA-HAP was 4.5 times higher compared to HAP, indicating its superior biocompatibility. Furthermore, the mechanical properties of the OPLA-ESOA-HAP/PLLA composite almost remained unaltered ever after undergoing two stages of thermal processing involving melt extrusion and inject molding. The increase in the biocompatibility and relatively high mechanical properties render OPLA-ESOA-HAP/PLLA a potential material for the biodegradable fixation system.

16.
Front Psychiatry ; 15: 1346151, 2024.
Article in English | MEDLINE | ID: mdl-38895030

ABSTRACT

Objective: The identification of depression primarily relies on the clinical symptoms and psychiatric evaluation of the patient, in the absence of objective and quantifiable biomarkers within clinical settings. This study aimed to explore potential serum biomarkers associated with depression. Methods: Serum samples from a training group comprising 48 depression patients and 48 healthy controls underwent proteomic analysis. Magnetic bead-based weak cation exchange (MB-WCX) and MALDI-TOF-MS were used in combination. To screen the differential peaks, ClinProTools software was employed. The proteins were identified using LC-MS/MS. ELISA was employed to confirm the expression of entire protein in the serum of the verification cohort, which encompassed 48 individuals who had been diagnosed with Depression and 48 healthy controls who were collected prospectively. Subsequently, logistic regression analysis was conducted to determine the diagnostic efficacy of the aforementioned predictors. Results: Five potential biomarker peaks indicating depression were identified in serum samples (peak 1, m/z: 1868.21; peak 2, m/z: 1062.35; peak 3, m/z: 1452.12; peak 4, m/z: 1208.72; peak 5, m/z: 1619.58). All of these peaks had higher expression in the pre-therapy group and were confirmed to be Tubulin beta chain (TUBB), Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), Complement component 3 (C3), and Complement C4A precursor (C4A) by ELISA validation. Multivariate logistic regression analysis revealed that serum levels of TUBB, ITIH4, C3, and C4A were significant independent risk factors for the development of depression. Conclusion: Depression is a prevalent psychiatric condition. Timely detection is challenging, resulting in poor prognoses for patients. Our study on plasma proteomics for depression demonstrated that TUBB, ITIH4, C3, and C4A differentiate between depression patients and healthy controls. The proteins that were identified could potentially function as biomarkers for the diagnosis of depression. Pinpointing these biomarkers could enable early identification of depression, which would advance precise treatment.

17.
Adv Sci (Weinh) ; : e2402838, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896788

ABSTRACT

Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products. In this study, a versatile fluorescent platform is developed for highly selective modification of cysteine/lysine under biocompatible conditions. Chloro- or phenoxy-substituted NBSe derivatives effectively labeled cysteine residues in the cellular proteome with high specificity. This finding also led to the development of phenoxy-NBSe phototheragnostic for the diagnosis and activatable photodynamic therapy of GSH-overexpressed cancer cells. Conversely, alkoxy-NBSe derivatives are engineered to selectively react with lysine residues in the cellular environment, exhibiting excellent anti-interfering ability against thiols. Leveraging a proximity-driven approach, alkoxy-NBSe probes are successfully designed to demonstrate their utility in bioimaging of lysine deacetylase activity. This study also achieves integrating a small photosensitizer into lysine residues of proteins in a regioselective manner, achieving photoablation of cancer cells activated by overexpressed proteins.

18.
BMC Ophthalmol ; 24(1): 240, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849786

ABSTRACT

BACKGROUND: Several immune checkpoint inhibitors (ICIs) have been linked to the occurrence of Vogt-Koyanagi-Harada disease (VKHD)-like uveitis. Among the ICIs, there has been no report of immune-related adverse events (irAEs) caused by a new programmed death protein-1(PD-1) monoclonal antibody (Toripalimab). CASE PRESENTATION: This paper presents a case of VKHD-like uveitis that arose following Toripalimab therapy for urothelial cancer of the bladder, and the patient experienced symptoms 10 days after the final dosage of 20 months of medication treatment. This patient with bladder uroepithelial carcinoma had severe binocular acute panuveitis with exudative retinal detachment after receiving Toripalimab therapy. Binocular VKHD-like uveitis was suggested as a diagnosis. Both eyes recovered after discontinuing immune checkpoint inhibitors and local and systemic corticosteroid treatment. CONCLUSIONS: This report suggests that VKHD-like uveitis can also occur in patients receiving novel PD-1 antibodies and the importance of paying attention to eye complications in patients receiving treatment over a long period.


Subject(s)
Immune Checkpoint Inhibitors , Uveomeningoencephalitic Syndrome , Humans , Uveomeningoencephalitic Syndrome/chemically induced , Uveomeningoencephalitic Syndrome/diagnosis , Immune Checkpoint Inhibitors/adverse effects , Male , Uveitis/chemically induced , Uveitis/diagnosis , Urinary Bladder Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Female , Middle Aged , Aged , Antineoplastic Agents, Immunological/adverse effects
19.
Int J Biol Sci ; 20(8): 3008-3027, 2024.
Article in English | MEDLINE | ID: mdl-38904013

ABSTRACT

SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Histone-Lysine N-Methyltransferase , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Proliferation/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Cell Movement/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Cell Line, Tumor , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/genetics , Methylation , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/genetics , Gene Expression Regulation, Neoplastic
20.
Nat Commun ; 15(1): 5288, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902277

ABSTRACT

Psoriasis is an immune-mediated skin disease associated with neurogenic inflammation, but the underlying molecular mechanism remains unclear. We demonstrate here that acid-sensing ion channel 3 (ASIC3) exacerbates psoriatic inflammation through a sensory neurogenic pathway. Global or nociceptor-specific Asic3 knockout (KO) in female mice alleviates imiquimod-induced psoriatic acanthosis and type 17 inflammation to the same extent as nociceptor ablation. However, ASIC3 is dispensable for IL-23-induced psoriatic inflammation that bypasses the need for nociceptors. Mechanistically, ASIC3 activation induces the activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons to promote neurogenic inflammation. Botulinum neurotoxin A and CGRP antagonists prevent sensory neuron-mediated exacerbation of psoriatic inflammation to similar extents as Asic3 KO. In contrast, replenishing CGRP in the skin of Asic3 KO mice restores the inflammatory response. These findings establish sensory ASIC3 as a critical constituent in psoriatic inflammation, and a promising target for neurogenic inflammation management.


Subject(s)
Acid Sensing Ion Channels , Calcitonin Gene-Related Peptide , Mice, Knockout , Psoriasis , Sensory Receptor Cells , Animals , Acid Sensing Ion Channels/metabolism , Acid Sensing Ion Channels/genetics , Female , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/genetics , Psoriasis/chemically induced , Mice , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/genetics , Sensory Receptor Cells/metabolism , Skin/metabolism , Skin/pathology , Imiquimod , Mice, Inbred C57BL , Disease Models, Animal , Inflammation/metabolism , Neurogenic Inflammation/metabolism , Humans , Nociceptors/metabolism , Interleukin-23/metabolism , Interleukin-23/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...