Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Sci Total Environ ; 948: 174983, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047834

ABSTRACT

NASA has released the latest Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-Angle Implementation of Atmospheric Correction (MAIAC) Collection 6 (C6) and Collection 6.1 (C6.1) aerosol optical depth (AOD) products with 1 km spatial resolution. This study validated and compared C6 and C6.1 MAIAC AOD products with AERONET observations in terms of accuracy and stability, and analyzed the spatiotemporal characteristics of AOD at different scales in China. The results show that the overall accuracy of MAIAC products is good, with correlation coefficient (R) > 0.9, mean bias (BIAS) < 0.015, and the fraction within the expected error (EE) > 68 %. However, after the algorithm update, the accuracy of Terra MAIAC aerosol products C6.1 has significantly decreased. The accuracy of the products varies with the region. The accuracy of C6.1 in North China, Central East China, and West China, is comparable to or even exceeds that of C6, but performs poorly in South China. In addition, the stability of the updated C6.1 MAIAC aerosol products has not seen significantly improvement. The metrics of no product can all meet the stability goals of the Global Climate Observing System (GCOS, 0.02 per decade) in China. C6.1 improves the retrieval frequency in many regions and temporarily solves the problem of AOD discontinuity at the boundaries of different aerosol models in C6, but there are some fixed climatological AOD blocks (AOD = 0.014) in the eastern Tibetan Plateau region. Both C6 and C6.1 can capture similar annual variation characteristics of AOD to those observed at the AERONET sites. The study provides possible references for improving the MAIAC algorithm and building long-term stable aerosol records.

2.
Adv Sci (Weinh) ; : e2307937, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-39031551

ABSTRACT

Essential amino acids (EAA) and microRNAs (miRs) control biological activity of a cell. Whether EAA regulates the activity of miR has never been demonstrated. Here, as proof-of-concept, a tryptophan (Trp, an EAA) complex containing Argonaute 2 (Ago2) and miRs including miR-193a (Trp/Ago2/miR-193a) is identified. Trp binds miR-193a-3p and interacts with Ago2. Trp/Ago2/miR-193a increases miR-193a-3p activity via enhancing Argonaute 2 (Ago2) RNase activity. Other miRs including miR-103 and miR-107 in the Trp complex enhance miR-193a activity by targeting the same genes. Mechanistically, the Trp/Ago2/miR-193a complex interacts with Trp-binding pockets of the PIWI domain of Ago2 to enhance Ago2 mediated miR activity. This newly formed Ago2/Trp/miR-193a-3p complex is more efficient than miR-193a-3p alone in inhibiting the expression of targeted genes and inhibiting colon cancer liver metastasis. The findings show that Trp regulates miR activity through communication with the RNA-induced silencing complexes (RISC), which provides the basis for tryptophan based miR therapy.

3.
Acta Pharmacol Sin ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834683

ABSTRACT

Bruton's tyrosine kinase (BTK) has emerged as a therapeutic target for B-cell malignancies, which is substantiated by the efficacy of various irreversible or reversible BTK inhibitors. However, on-target BTK mutations facilitating evasion from BTK inhibition lead to resistance that limits the therapeutic efficacy of BTK inhibitors. In this study we employed structure-based drug design strategies based on established BTK inhibitors and yielded a series of BTK targeting compounds. Among them, compound S-016 bearing a unique tricyclic structure exhibited potent BTK kinase inhibitory activity with an IC50 value of 0.5 nM, comparable to a commercially available BTK inhibitor ibrutinib (IC50 = 0.4 nM). S-016, as a novel irreversible BTK inhibitor, displayed superior kinase selectivity compared to ibrutinib and significant therapeutic effects against B-cell lymphoma both in vitro and in vivo. Furthermore, we generated BTK inhibitor-resistant lymphoma cells harboring BTK C481F or A428D to explore strategies for overcoming resistance. Co-culture of these DLBCL cells with M0 macrophages led to the polarization of M0 macrophages toward the M2 phenotype, a process known to support tumor progression. Intriguingly, we demonstrated that SYHA1813, a compound targeting both VEGFR and CSF1R, effectively reshaped the tumor microenvironment (TME) and significantly overcame the acquired resistance to BTK inhibitors in both BTK-mutated and wild-type BTK DLBCL models by inhibiting angiogenesis and modulating macrophage polarization. Overall, this study not only promotes the development of new BTK inhibitors but also offers innovative treatment strategies for B-cell lymphomas, including those with BTK mutations.

4.
Adv Mater ; : e2405898, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924602

ABSTRACT

Nanoscale Metal-Organic Frameworks (nanoMOFs) are widely implemented in a host of assays involving drug delivery, biosensing catalysis, and bioimaging. However, the cell pathways and cell fate remain poorly understood. Here, a new fluorescent nanoMOF integrating ATTO 655 into surface defects of colloidal UiO-66 is synthesized, allowing to track the spatiotemporal localization of Single nanoMOF in live cells. density functional theory reveals the stronger binding of ATTO 655 to the Zr6 cluster nodes compared with phosphate and Alendronate Sodium. Parallelized tracking of the spatiotemporal localization of thousands of nanoMOFs and analysis using machine learning platforms reveals whether nanoMOFs remain outside as well as their cellular internalization pathways. To quantitatively assess their colocalization with endo/lysosomal compartments, a colocalization proxy approach relying on the nanoMOF detection of particles in one channel to the signal in the corresponding endo/lysosomal compartments channel, considering signal versus local background intensity ratio and signal-to-noise ratio is developed. This strategy mitigates colocalization value inflation from high or low signal expression in endo/lysosomal compartments. The results accurately measure the nanoMOFs' colocalization from early to late endosomes and lysosomes and emphasize the importance of understanding their intracellular dynamics based on single-particle tracking for optimal and safe drug delivery.

5.
J Nanobiotechnology ; 22(1): 354, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902775

ABSTRACT

Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.


Subject(s)
Drug Delivery Systems , Humans , Animals , Drug Delivery Systems/methods , Neovascularization, Pathologic/drug therapy , Fundus Oculi , Quantum Dots/chemistry , Multifunctional Nanoparticles/chemistry , Retinal Neovascularization/drug therapy , Nanomedicine/methods , Nanoparticles/chemistry
6.
Sci Rep ; 14(1): 8171, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589592

ABSTRACT

In order to study the effect of temperature on the structure and mechanical properties of coal with different metamorphic degree. Three coal samples with varying degrees of metamorphism were chosen for analysis. The discrete element software PFC2D is used to simulate the heat treatment and compression of coal. The findings indicate that during the heating process, low-order coal exhibits noticeable thermal cracks at an early stage, while thermal crack development in middle-order coal is concentrated in the later stages. In contrast, high-order coal demonstrates a more stable macroscopic structure. The strength and stiffness of low rank coal show the lowest value and decrease significantly within 135 °C. However, the strength and stiffness of medium rank coal decrease significantly after 135 °C. The changes of mechanical properties and damage modes of coal caused by thermal damage are often ignored, which may lead to the deviation of design and research results from the actual situation. Therefore, this study is of great significance to the prevention and control of coal mine disasters.

7.
Int J Hematol ; 119(4): 374-382, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411864

ABSTRACT

Thalassemia is a highly prevalent hematologic disease in Guizhou, China. This study aimed to determine the epidemiological characteristics of thalassemia in couples at childbearing age and assess the neonatal risk of thalassemia in this subpopulation. A cohort of 4481 couples at childbearing age were recruited for thalassemia carrier screening by both traditional hematological tests and next-generation sequencing. Of them, 1314 (14.66%) thalassemia carriers were identified, including 857 (9.76%) α-thalassemia, 391 (4.36%) ß-thalassemia, and 48 (0.54%) composite α and ß-thalassemia. A total of 12 α-globin gene alterations and 16 ß-globin mutations were detected, including four novel thalassemia mutations. SEA was the most common α-thalassemia genotype (26.86%), CD41-42 the most common ß-thalassemia genotype (36.57%), and αα/- α3.7 + CD41-42 the most common composite α- and ß-thalassemia genotype (18.75%). Ethnically, the Zhuang had the highest rate of thalassemia gene carriers among the ethnic groups. Geographically, Qiannan had the highest rate of thalassemia gene carriers. In addition, 38 of the 48 couples with composite α- and ß-thalassemia were high-risk thalassemia carriers, and 4 carrying the -SEA/αα gene needed fertility guidance.


Subject(s)
alpha-Thalassemia , beta-Thalassemia , Infant, Newborn , Humans , beta-Thalassemia/epidemiology , beta-Thalassemia/genetics , beta-Thalassemia/diagnosis , alpha-Thalassemia/epidemiology , alpha-Thalassemia/genetics , alpha-Thalassemia/diagnosis , Prevalence , Genotype , Mutation , China/epidemiology , Fertility , Risk Assessment
8.
Nat Commun ; 15(1): 1809, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418489

ABSTRACT

Further increasing the critical temperature and/or decreasing the stabilized pressure are the general hopes for the hydride superconductors. Inspired by the low stabilized pressure associated with Ce 4f electrons in superconducting cerium superhydride and the high critical temperature in yttrium superhydride, we carry out seven independent runs to synthesize yttrium-cerium alloy hydrides. The synthetic process is examined by the Raman scattering and X-ray diffraction measurements. The superconductivity is obtained from the observed zero-resistance state with the detected onset critical temperatures in the range of 97-141 K. The upper critical field towards 0 K at pressure of 124 GPa is determined to be between 56 and 78 T by extrapolation of the results of the electrical transport measurements at applied magnetic fields. The analysis of the structural data and theoretical calculations suggest that the phase of Y0.5Ce0.5H9 in hexagonal structure with the space group of P63/mmc is stable in the studied pressure range. These results indicate that alloying superhydrides indeed can maintain relatively high critical temperature at relatively modest pressures accessible by laboratory conditions.

9.
Chem Res Toxicol ; 37(2): 311-322, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38238692

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) is a sort of endocrine disruptor that induces abnormal physiological and biochemical activities such as epigenetic alterations, apoptosis, and oxidative stress. MicroRNAs (miRNAs) are a class of short noncoding RNAs that may regulate the expression of many protein-coding genes when organisms are exposed to environmental chemicals. miR-222b is a differentially expressed miRNA after DEHP exposure. miRNA-mRNA prediction suggested that BTB (POZ) structural domain 6b (BTBD6B) might be a target mRNA of miR-222b, and DEHP exposure altered its expression. However, the correlation between miR-222b and BTBD6B has not been experimentally confirmed. The aim of this study was to investigate the regulation of BTBD6B by miR-222b in zebrafish embryos under the effect of low concentration of DEHP. Dual fluorescent protein assays and dual luciferase reporter gene assays confirmed the interaction between miR-222b and the 3'-untranslated region (3'-UTR) of BTBD6B. Ectopic expression assays showed that miR-222b could negatively regulate BTBD6B in ZF4 cells. However, the relative expression of miR-222b and BTBD6B was significantly higher at both transcriptional and post-transcriptional levels in zebrafish embryos exposed to low concentrations of DEHP. The results of this study improved our understanding of the molecular mechanism of DEHP exposure toxicity. It identified that the aberrant expression of miR-222b/BTBD6B may be one of the mechanisms of DEHP toxicity, which can provide a theoretical reference and scientific basis for environmental management and biological health risk assessment.


Subject(s)
Diethylhexyl Phthalate , MicroRNAs , Animals , Zebrafish/genetics , Diethylhexyl Phthalate/toxicity , MicroRNAs/genetics , Oxidative Stress , RNA, Messenger
10.
Small ; 20(20): e2308680, 2024 May.
Article in English | MEDLINE | ID: mdl-38225709

ABSTRACT

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.


Subject(s)
Brain-Gut Axis , Diabetes Mellitus, Type 2 , Exosomes , Garlic , Gastrointestinal Microbiome , Nanoparticles , Diabetes Mellitus, Type 2/metabolism , Garlic/chemistry , Animals , Nanoparticles/chemistry , Exosomes/metabolism , Mice , Akkermansia , Humans , Male , Diet, High-Fat , Mice, Inbred C57BL , Brain/metabolism , Brain/pathology
11.
Sci Rep ; 13(1): 22035, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086840

ABSTRACT

The presence of different types of coal at room temperature can lead to self-heating of coal, potentially resulting in spontaneous combustion. To investigate the effect of ambient temperature pre-oxidation (BL) time on the self-combustion characteristics of different coal types, synchronous thermal analysis (STA) and Fourier-transform infrared spectroscopy (FTIR) experiments were conducted. The results of the synchronous thermal analysis experiments indicate that ambient temperature pre-oxidation for 3 months (BL3), BL6, and BL9 coals exhibit faster oxidation reactions compared to the original coal, while BL12 coal shows slower oxidation than the original coal. Among these, BL9 coal demonstrates the most significant changes in oxidation reaction characteristics, with the fastest oxidation reaction time being 35.36 min, which is 1.38 min faster than the original coal. To support this observation, a comparison was made between the relative content of active functional groups in the original coal and BL coal. The study revealed that the BL process affects the relative content of hydroxyl groups, aromatic hydrocarbons, aliphatic hydrocarbons, and oxygen-containing functional groups, thereby influencing the coal-oxygen reaction process. This suggests that pre-oxidized coal, compared to the original coal, has a larger pore structure, which plays a dominant role in promoting coal self-combustion in the first 9 months of the BL process. As BL time continues to increase, the continuous reaction of active functional groups at room temperature leads to excessive consumption, resulting in a more significant role in inhibiting coal self-combustion. The research results provide valuable insights for predicting the spontaneous combustion risk of oxidized coal.

12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1811-1814, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38071065

ABSTRACT

OBJECTIVE: To investigate characteristics of silent alpha thalassemia genes in child-bearing adults in Guangdong, in order to provide data for the prevention and control of hemoglobin H disease. METHODS: A total of 8 752 cases were collected from January 2016 to December 2020. Gap-PCR was used to detect the deletional of α-thalassemia mutations (-α3.7, -α4.2), while PCR reverse dot blot hybridization assay (RDB) was used to detect the non-deletional α-thalassemia mutations (Hb CS, Hb QS and Hb Westmead). RESULTS: Among 8 752 subjects, 717 cases of silent α-thalassemia were detected, the detection rate was 8.19%, including 555 cases of deletional α-thalassemia (77.41%) and 162 cases of non-deletional α-thalassemia 22.59%. The mean corpuscular volume (MCV) of deletional silent α-thalassemia was (82.09±4.10) fl, and mean corpuscular hemoglobin (MCH) was (27.03±1.37) pg, which both were over the diagnostic cut-off value for thalassemia. The MCV of non-deletional silent α-thalassemia was (81.07±4.93) fl, and MCH was (26.77±2.20) pg. According to the diagnostic criteria, if using MCV<82 fl or (and) MCH<27 pg as a positive criteria for screening thalassemia in the childbearing age, the screening sensitivity was 53.14% and different in different genotype, among which ααQS/αα was 100%, -α3.7/αα, -α4.2/αα, ααCS/αα and ααWS/αα was 62.15%, 63.41%, 44.83% and 39.62%, respectively. Namely, nearly half the carriers of such mutations might have escaped detection as a result of their screening strategy. CONCLUSION: When a couple is preparing for pregnancy, if one of them has been determined to be mild α-thalassemia or hemoglobin H disease, other half is necessary to carry out silent α thalassemia detection to prevent the birth of children with hemoglobin H disease even if MCV>82 fl and MCH>27 pg.


Subject(s)
alpha-Thalassemia , beta-Thalassemia , Adult , Pregnancy , Female , Humans , alpha-Thalassemia/genetics , alpha-Thalassemia/diagnosis , Genotype , Mutation , Erythrocyte Indices , Polymerase Chain Reaction , China , beta-Thalassemia/genetics
13.
J Phys Condens Matter ; 36(7)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37918102

ABSTRACT

Clathrate hydrideFm3-m-LaH10has been proven as the most extraordinary superconductor with the critical temperatureTcabove 250 K upon compression of hundreds of GPa in recent years. A general hope is to reduce the stabilization pressure and maintain the highTcvalue of the specific phase in LaH10. However, strong structural instability distortsFm3-mstructure and leads to a rapid decrease ofTcat low pressures. Here, we investigate the phase stability and superconducting behaviors ofFm3-m-LaH10with enhanced chemical pre-compression through partly replacing La by Ce atoms from both experiments and calculations. For explicitly characterizing the synthesized hydride, we choose lanthanum-cerium alloy with stoichiometry composition of 1:1. X-ray diffraction and Raman scattering measurements reveal the stabilization ofFm3-m-La0.5Ce0.5H10in the pressure range of 140-160 GPa. Superconductivity withTcof 175 ± 2 K at 155 GPa is confirmed with the observation of the zero-resistivity state and supported by the theoretical calculations. These findings provide applicability in the future explorations for a large variety of hydrogen-rich hydrides.

14.
Front Microbiol ; 14: 1273949, 2023.
Article in English | MEDLINE | ID: mdl-38029192

ABSTRACT

Introduction: Enterococcus faecium is a common pathogen responsible for urinary tract infections (UTIs) and often establishes extensive colonization within the intestinal tract. Our aim was to assess the genomic and transcriptomic differences between colonized E. faecium without UTI (only-colonization) and colonized E. faecium causing UTI (endogenous infections). Method: We investigated the correlation between fecal isolates from the same patient and UTI-causing isolates using PFGE and WGS, and classified fecal isolates into two groups: those that solely colonized and those associated with endogenous urinary tract infections. We characterized the genomes of colonization-only and endogenously infected isolates by Scoary GWAS, and the transcriptomes of the isolates at 3 h urine exposure to assess pathogen-related changes. Result: Based on PFGE and WGS, eight isolates of endogenously infected E. faecium and nine isolates of only-colonized E. faecium were characterized and carbon and nitrogen regulated metabolisms such as genes encoding the phosphotransferase (PTS) system were enriched in endogenously infected E. faecium. Transcriptome analysis revealed significant differences in gene expression in the PTS system, lysine synthesis, galactose metabolism and citrate import between endogenously infected and only-colonized E. faecium isolates, highlighting the important role of certain carbon regulatory genes in the colonization and survival of endogenously infected E. faecium. Conclusion: In only-colonized and endogenously infected isolates, we observed differential expression patterns of genes related to carbon metabolism and amino acids, suggesting that metabolic diversity is a strategy for isolates leading to endogenous infection.

15.
Front Pharmacol ; 14: 1181919, 2023.
Article in English | MEDLINE | ID: mdl-37229264

ABSTRACT

Objective: To evaluate whether periconceptional or pregnancy exposure of human papillomavirus (HPV) vaccination would increase the risk of adverse pregnancy outcomes. Methods: The PubMed, Web of Science, Embase, the Cochrane Library of clinical trials were searched from inception to March 2023. We computed relative risk (RR) and 95% confidence intervals (CIs) and prediction intervals (PIs) regarding the association between HPV vaccination in periconceptional period or during pregnancy and the risks of adverse pregnancy outcomes by using R software Version 4.1.2 and STATA Version 12.0. A trial sequential analysis (TSA) was performed with TSA v0.9.5.10 Beta software. Results: Four randomized controlled trials (RCTs) and eight cohort studies were included in this meta-analysis. Analysis of RCTs showed that HPV vaccination in periconceptional period or during pregnancy did not increase the risks of spontaneous abortion (RR = 1.152, 95% CI: 0.909-1.460, 95% PI: 0.442-3.000), birth defects (RR = 1.171, 95% CI: 0.802-1.709, 95% PI: 0.320-4.342), stillbirth (RR = 1.053, 95% CI: 0.616-1.800, 95% PI: 0.318-3.540), preterm birth (RR = 0.940, 95% CI: 0.670-1.318) and ectopic pregnancy (RR = 0.807, 95% CI: 0.353-1.842, 95% PI: 0.128-5.335). In cohort studies, periconceptional or pregnancy exposures of HPV vaccine were not associated with the increased risk of spontaneous abortion (RR = 0.987, 95% CI: 0.854-1.140, 95% PI: 0.652-1.493), birth defects (RR = 0.960, 95% CI: 0.697-1.322, 95% PI: 0.371-2.480), stillbirth (RR = 1.033, 95% CI: 0.651-1.639, 95% PI: 0.052-21.064), small size for gestational age (SGA) (RR = 0.971, 95% CI: 0.873-1.081, 95% PI: 0.657-1.462) and preterm birth (RR = 0.977, 95% CI: 0.874-1.092, 95% PI: 0.651-1.444). Conclusion: HPV vaccine exposures in periconceptional period or during pregnancy did not increase the risks of adverse pregnancy outcomes, including spontaneous abortion, birth defects, stillbirth, SGA, preterm birth and ectopic pregnancy. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023399777.

16.
iScience ; 26(5): 106630, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37192973

ABSTRACT

Natural IL-17-producing γδ T cells (γδT17 cells) are unconventional innate-like T cells that undergo functional programming in the fetal thymus. However, the intrinsic metabolic mechanisms of γδT17 cell development remain undefined. Here, we demonstrate that mTORC2, not mTORC1, selectively controls the functional fate commitment of γδT17 cells through regulating transcription factor c-Maf expression. scRNA-seq data suggest that fetal and adult γδT17 cells predominately utilize mitochondrial metabolism. mTORC2 deficiency results in impaired Drp1-mediated mitochondrial fission and mitochondrial dysfunction characterized by mitochondrial membrane potential (ΔΨm) loss, reduced oxidative phosphorylation (OXPHOS), and subsequent ATP depletion. Treatment with the Drp1 inhibitor Mdivi-1 alleviates imiquimod-induced skin inflammation. Reconstitution of intracellular ATP levels by ATP-encapsulated liposome completely rescues γδT17 defect caused by mTORC2 deficiency, revealing the fundamental role of metabolite ATP in γδT17 development. These results provide an in-depth insight into the intrinsic link between the mitochondrial OXPHOS pathway and γδT17 thymic programming and functional acquisition.

17.
ACS Omega ; 8(19): 17064-17076, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37214670

ABSTRACT

The KBr pellet press method for detecting the infrared spectrum of coal is one of the commonly used methods for analyzing the types and content of functional groups in coal. However, KBr crystalline water or moisture has a significant impact on the peak position, peak shape, and peak area of the organic O-H based stretching vibration wave in coal. In this paper, the theoretical characteristics of infrared spectra of phenols and alcohols have been simulated and analyzed using the Gaussian 16 series of programs. Four infrared spectral analysis techniques, in situ infrared, KBr pellet press, dry KBr pellet press, and paste methods, have been used to detect the infrared spectra of coal. The results show that the stretching vibration peaks of free O-H radicals without hydrogen bonding are located between 3700 and 3600 cm-1. After the O-H form hydrogen bonds with each other, the O-H stretching vibration frequency moves toward the low frequency direction, and the lower the wavenumber, the more O-H content. The conventional KBr gasket manufacturing process will absorb moisture in the air to interfere with the hydroxyl absorption peak of coal, and the experimental process requires absolute drying. The relative content of hydroxyl in coal can be compared and analyzed based on the peak position, peak shape, and peak area of the hydroxyl stretching vibration wave. Quantitative analysis of hydroxyl groups in coal also requires combination of elemental analysis and X-ray photoelectron spectroscopy.

18.
Chem Commun (Camb) ; 59(27): 4067-4070, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36938643

ABSTRACT

Aqueous Fe-ion batteries (FIBs) have gradually emerged in recent years due to their inherent merits. Herein, we constructed a Mg-substituted Prussian blue analogue (MgFeHCF) as cathode for FIBs, achieving higher capacity (96 mA h g-1) and better stability (70.9% capacity retention over 500 cycles). The Fe-ion storage mechanism was revealed using the in situ XRD technique and DFT calculations were employed to analyse the battery performance.

19.
J Extracell Vesicles ; 12(2): e12307, 2023 02.
Article in English | MEDLINE | ID: mdl-36754903

ABSTRACT

Extracellular vesicles (EVs) contain more than 100 proteins. Whether there are EVs proteins that act as an 'organiser' of protein networks to generate a new or different biological effect from that identified in EV-producing cells has never been demonstrated. Here, as a proof-of-concept, we demonstrate that EV-G12D-mutant KRAS serves as a leader that forms a protein complex and promotes lung inflammation and tumour growth via the Fn1/IL-17A/FGF21 axis. Mechanistically, in contrast to cytosol derived G12D-mutant KRAS complex from EVs-producing cells, EV-G12D-mutant KRAS interacts with a group of extracellular vesicular factors via fibronectin-1 (Fn1), which drives the activation of the IL-17A/FGF21 inflammation pathway in EV recipient cells. We show that: (i), depletion of EV-Fn1 leads to a reduction of a number of inflammatory cytokines including IL-17A; (ii) induction of IL-17A promotes lung inflammation, which in turn leads to IL-17A mediated induction of FGF21 in the lung; and (iii) EV-G12D-mutant KRAS complex mediated lung inflammation is abrogated in IL-17 receptor KO mice. These findings establish a new concept in EV function with potential implications for novel therapeutic interventions in EV-mediated disease processes.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , Pneumonia , Mice , Animals , Interleukin-17/metabolism , Interleukin-17/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mutant Proteins/metabolism , Mutant Proteins/therapeutic use , Extracellular Vesicles/metabolism , Lung Neoplasms/drug therapy , Pneumonia/genetics
20.
Nat Immunol ; 24(2): 239-254, 2023 02.
Article in English | MEDLINE | ID: mdl-36604547

ABSTRACT

Metastasis is the leading cause of cancer-related deaths and myeloid cells are critical in the metastatic microenvironment. Here, we explore the implications of reprogramming pre-metastatic niche myeloid cells by inducing trained immunity with whole beta-glucan particle (WGP). WGP-trained macrophages had increased responsiveness not only to lipopolysaccharide but also to tumor-derived factors. WGP in vivo treatment led to a trained immunity phenotype in lung interstitial macrophages, resulting in inhibition of tumor metastasis and survival prolongation in multiple mouse models of metastasis. WGP-induced trained immunity is mediated by the metabolite sphingosine-1-phosphate. Adoptive transfer of WGP-trained bone marrow-derived macrophages reduced tumor lung metastasis. Blockade of sphingosine-1-phosphate synthesis and mitochondrial fission abrogated WGP-induced trained immunity and its inhibition of lung metastases. WGP also induced trained immunity in human monocytes, resulting in antitumor activity. Our study identifies the metabolic sphingolipid-mitochondrial fission pathway for WGP-induced trained immunity and control over metastasis.


Subject(s)
Lung Neoplasms , beta-Glucans , Animals , Mice , Humans , Trained Immunity , Macrophages , Lysophospholipids/metabolism , Monocytes , Lung Neoplasms/pathology , beta-Glucans/metabolism , beta-Glucans/pharmacology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL