Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Ther Sci ; 29(8): 1357-1362, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28878462

ABSTRACT

[Purpose] This study investigates the effects of task-oriented activities on hand function, cognitive function, and self-expression of the elderly with dementia, and then identify the influencing factors on self-expression in sub-factors of dependent variables. [Subjects and Methods] Forty elderly persons were divided into two groups: intervention group (n=20) and control group (n=20). The interventions were applied to the subjects 3 times a week, 50 minutes per each time, for a total of five weeks. We measured the jamar hand dynamometer test for grip strength, the jamar hydraulic pinch gauge test for prehension test, nine-hole pegboard test for coordination test, and Loewenstein Occupational Therapy Cognitive Assessment-Geriatric Population for cognitive function, and self-expression rating scale for self-expression test. [Results] The task-oriented activities promoted hand function, cognitive function (visual perception, spatial perception, visuomotor organization, attention & concentration) and self-expression of the elderly with early dementia, and the factors influencing the self-expression were cognitive function (visual perception) and hand function (coordination). The study showed that the task-oriented program enabled self-expression by improving hand function and cognitive function. [Conclusion] This study suggested that there should be provided the task-oriented program for prevention and treatment of the elderly with early dementia in the clinical settings and it was considered that results have a value as basic data that can be verified relationship of hand function, cognitive function, and self-expression.

2.
J Nanosci Nanotechnol ; 14(12): 9340-5, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971062

ABSTRACT

In this work, silicon (Si) containing carbon coated core-shell nanostructures were synthesized by electrical explosion of Si wires in ethanol solution followed by high energy mechanical milling (HEMM) process. Material characterization was carried-out using transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analysis. HEMM led to very fine and amorphous Si particles in the presence of carbon and inactive Silicon-Carbide (SiC) matrix. These Si based nanocomposites, obtained through electrical explosion followed by HEMM (milled sample), exhibited enhanced electrochemical performance than unmilled nanocomposites, when evaluated as anode material for lithium-ion batteries (LIBs). On completion of (the) 1st cycle, milled and unmilled sample(s) showed specific discharge capacities around 825 mAh/g and 717 mAh/g, respectively. Interestingly, the coulombic efficiencies of milled and unmilled samples were 98.5% and 97% after 60th cycle respectively. The enhanced electrochemical performance is attributed to fine and amorphous Si based nanocomposite obtained through HEMM process.

3.
Macromol Rapid Commun ; 31(23): 2064-9, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21567632

ABSTRACT

An aqueous solution of a poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) with a composition of EG(13) CL(23) EG(13) undergoes multiple transitions, from sol-to-gel (hard gel)-to-sol-to-gel (soft gel)-to-sol, in the concentration range 20.0∼35.0 wt.-%. Through dynamic mechanical analysis, UV-vis spectrophotometry, small angle X-ray scattering, differential scanning calorimetry, microcalorimetry and (13) C NMR spectroscopy, the mechanism of these transitions was investigated. The hard gel and soft gel are distinguished by the crystalline and amorphous state of the PCL. The extent of PEG dehydration and the molecular motion of each block also played a critical role in the multiple transitions. This paper suggests a new mechanism for these multiple transitions driven by temperature changes.

4.
Biomacromolecules ; 6(2): 885-90, 2005.
Article in English | MEDLINE | ID: mdl-15762655

ABSTRACT

The aqueous solution of poly(ethylene glycol)-poly(caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) triblock copolymers (> 15. wt. %) undergoing "clear sol-gel-turbid sol" transition as the temperature increases from 20 to 60 degrees C has been developed. Light scattering and 13C NMR study suggested that the transition mechanisms are the micellar aggregation for the clear sol to gel transition (lower transition), whereas the increase in PCL molecular motion for gel to turbid sol transition (upper transition). In contrast to the previous thermogelling biodegradable polymers with a sticky paste morphology, the powder form of the PEG-PCL-PEG triblock copolymers makes it easy to handle and allows fast dissolution in water. Therefore, the lyophilization into a powder form followed by facile reconstitution was possible. This system is believed to be promising for drug delivery, cell therapy, and tissue engineering.


Subject(s)
Biocompatible Materials/chemical synthesis , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Polymers/chemical synthesis , Biocompatible Materials/chemistry , Caproates , Freeze Drying , Lactones , Phase Transition , Poloxamer , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL