Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
Cancer Discov ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39378050

ABSTRACT

The genomic features of pancreatic ductal adenocarcinoma (PDAC) have been well described, yet the evolutionary contexts within which those features occur remains unexplored. We studied the genome landscapes, phylogenies and clonal compositions of 91 PDACs in relation to clinicopathologic features. There was no difference in the number of driver mutations or the evolutionary timing that each mutation occurred. High truncal density, a metric of the accumulation of somatic mutations in the lineage that gave rise to each PDAC, was significantly associated with worse overall survival. Polyclonal, monoclonal or mixed polyclonal/monoclonal metastases were identified across the cohort highlighting multiple forms of inter-tumoral heterogeneity. Advanced stage and treated PDACs had higher odds of being polyclonal, whereas oligometastatic PDACs had fewer driver alterations, a lower fractional allelic loss and increased likelihood of being monoclonal. In sum, our findings reveal novel insights into the dynamic nature of the PDAC genome beyond established genetic paradigms.

2.
bioRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39131366

ABSTRACT

Langerhans cell Histiocytosis (LCH) and Erdheim-Chester disease (ECD) are clonal myeloid disorders, associated with MAP-Kinase activating mutations and an increased risk of neurodegeneration. Surprisingly, we found pervasive PU.1+ microglia mutant clones across the brain of LCH and ECD patients with and without neurological symptoms, associated with microgliosis, reactive astrocytosis, and neuronal loss. The disease predominated in the grey nuclei of the rhombencephalon, a topography attributable to a local proliferative advantage of mutant microglia. Presence of clinical symptoms was associated with a longer evolution of the disease and a larger size of PU.1+ clones (p= 0.0003). Genetic lineage tracing of PU.1+ clones suggest a resident macrophage lineage or a bone marrow precursor origin depending on patients. Finally, a CSF1R-inhibitor depleted mutant microglia and limited neuronal loss in mice suggesting an alternative to MAPK inhibitors. These studies characterize a progressive neurodegenerative disease, caused by clonal proliferation of inflammatory microglia (CPIM), with a decade(s)-long preclinical stage of incipient disease that represent a therapeutic window for prevention of neuronal death.

3.
Cancer Discov ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39028915

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer secreted protein that becomes over-expressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis. NPTX1-AMIGO2 signaling enhanced hypoxic growth and was critically required for hypoxia induced factor-1a (HIF1a) nuclear retention and function. NPTX1 is over-expressed in human PDAC tumors and upregulated in liver metastases. Therapeutic targeting of NPTX1 with a high-affinity monoclonal antibody substantially reduced PDAC liver metastatic colonization. We thus identify NPTX1-AMIGO2 as druggable critical upstream regulators of the HIF1a hypoxic response in PDAC.

4.
Sci Rep ; 14(1): 15598, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38971768

ABSTRACT

Although sequence-based studies show that basal-like features lead to worse prognosis and chemotherapy-resistance compared to the classical subtype in advanced pancreatic ductal adenocarcinoma (PDAC), a surrogate biomarker distinguishing between these subtypes in routine diagnostic practice remains to be identified. We aimed to evaluate the utility of immunohistochemistry (IHC) expression subtypes generated by unsupervised hierarchical clustering based on staining scores of four markers (CK5/6, p63, GATA6, HNF4a) applied to endoscopic ultrasound-guided fine needle aspiration biopsy (EUS-FNAB) materials. EUS-FNAB materials taken from 190 treatment-naïve advanced PDAC patients were analyzed, and three IHC patterns were established (Classical, Transitional, and Basal-like pattern). Basal-like pattern (high co-expression of CK5/6 and p63 with low expression of GATA6 and HNF4a) was significantly associated with squamous differentiation histology (p < 0.001) and demonstrated the worst overall survival among our cohort (p = 0.004). IHC expression subtype (Transitional, Basal vs Classical) was an independent poor prognosticator in multivariate analysis [HR 1.58 (95% CI 1.01-2.38), p = 0.047]. Furthermore, CK5/6 expression was an independent poor prognostic factor in histological glandular type PDAC [HR 2.82 (95% CI 1.31-6.08), p = 0.008]. Our results suggest that IHC expression patterns successfully predict molecular features indicative of the Basal-like subgroup in advanced PDAC. These results provide the basis for appropriate stratification for therapeutic selection and prognostic estimation of advanced PDAC in a simplified manner.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , GATA6 Transcription Factor , Hepatocyte Nuclear Factor 4 , Immunohistochemistry , Pancreatic Neoplasms , Humans , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Male , Female , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Aged , Biomarkers, Tumor/metabolism , Middle Aged , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/genetics , Prognosis , Keratin-5/metabolism , Keratin-6/metabolism , Aged, 80 and over , Adult , Endoscopic Ultrasound-Guided Fine Needle Aspiration , Transcription Factors , Tumor Suppressor Proteins
5.
Clin Cancer Res ; 30(16): 3499-3511, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38864854

ABSTRACT

PURPOSE: Intrahepatic cholangiocarcinoma (IHC) is a heterogeneous tumor. The hidden-genome classifier, a supervised machine learning-based algorithm, was used to quantify tumor heterogeneity and improve classification. EXPERIMENTAL DESIGN: A retrospective review of 1,370 patients with IHC, extrahepatic cholangiocarcinoma (EHC), gallbladder cancer (GBC), hepatocellular carcinoma (HCC), or biphenotypic tumors was conducted. A hidden-genome model classified 527 IHC based on genetic similarity to EHC/GBC or HCC. Genetic, histologic, and clinical data were correlated. RESULTS: In this study, 410 IHC (78%) had >50% genetic homology with EHC/GBC; 122 (23%) had >90% homology ("biliary class"), characterized by alterations of KRAS, SMAD4, and CDKN2A loss; 117 IHC (22%) had >50% genetic homology with HCC; and 30 (5.7%) had >90% homology ("HCC class"), characterized by TERT alterations. Patients with biliary- versus non-biliary-class IHC had median overall survival (OS) of 1 year (95% CI, 0.77, 1.5) versus 1.8 years (95% CI, 1.6, 2.0) for unresectable disease and 2.4 years (95% CI, 2.1, NR) versus 5.1 years (95% CI, 4.8, 6.9) for resectable disease. Large-duct IHC (n = 28) was more common in the biliary class (n = 27); the HCC class was composed mostly of small-duct IHC (64%, P = 0.02). The hidden genomic classifier predicted OS independent of FGFR2 and IDH1 alterations. By contrast, the histology subtype did not predict OS. CONCLUSIONS: IHC genetics form a spectrum with worse OS for tumors genetically aligned with EHC/GBC. The classifier proved superior to histologic subtypes for predicting OS independent of FGFR2 and IDH1 alterations. These results may explain the differential treatment responses seen in IHC and may direct therapy by helping stratify patients in future clinical trials.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/mortality , Male , Female , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/mortality , Middle Aged , Aged , Retrospective Studies , Receptor, Fibroblast Growth Factor, Type 2/genetics , Isocitrate Dehydrogenase/genetics , Biomarkers, Tumor/genetics , Adult , Mutation , Prognosis , Genetic Heterogeneity , Algorithms , Aged, 80 and over , Machine Learning , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/mortality , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/mortality
6.
Cell Rep ; 43(5): 114236, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38758650

ABSTRACT

The tumor microenvironment (TME) presents cells with challenges such as variable pH, hypoxia, and free radicals, triggering stress responses that affect cancer progression. In this study, we examine the stress response landscape in four carcinomas-breast, pancreas, ovary, and prostate-across five pathways: heat shock, oxidative stress, hypoxia, DNA damage, and unfolded protein stress. Using a combination of experimental and computational methods, we create an atlas of stress responses across various types of carcinomas. We find that stress responses vary within the TME and are especially active near cancer cells. Focusing on the non-immune stroma we find, across tumor types, that NRF2 and the oxidative stress response are distinctly activated in immune-regulatory cancer-associated fibroblasts and in a unique subset of cancer-associated pericytes. Our study thus provides an interactome of stress responses in cancer, offering ways to intersect survival pathways within the tumor, and advance cancer therapy.


Subject(s)
Oxidative Stress , Tumor Microenvironment , Humans , Stromal Cells/metabolism , Stromal Cells/pathology , Neoplasms/metabolism , Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Female , DNA Damage , Unfolded Protein Response , Male
7.
Cancer Res ; 84(7): 947-949, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558127
8.
bioRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562717

ABSTRACT

Driver gene mutations can increase the metastatic potential of the primary tumor1-3, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of SMAD4 - a transcriptional effector of TGFß signaling - which is a hallmark of multiple gastrointestinal malignancies4,5. SMAD4 inactivation mediates TGFß's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis6-14. To determine whether metastatic tumors remain dependent on SMAD4 inactivation, we developed a mouse model of pancreatic ductal adenocarcinoma (PDAC) that enables Smad4 depletion in the pre-malignant pancreas and subsequent Smad4 reactivation in established metastases. As expected, Smad4 inactivation facilitated the formation of primary tumors that eventually colonized the liver and lungs. By contrast, Smad4 reactivation in metastatic disease had strikingly opposite effects depending on the tumor's organ of residence: suppression of liver metastases and promotion of lung metastases. Integrative multiomic analysis revealed organ-specific differences in the tumor cells' epigenomic state, whereby the liver and lungs harbored chromatin programs respectively dominated by the KLF and RUNX developmental transcription factors, with Klf4 depletion being sufficient to reverse Smad4's tumor-suppressive activity in liver metastases. Our results show how epigenetic states favored by the organ of residence can influence the function of driver genes in metastatic tumors. This organ-specific gene-chromatin interplay invites consideration of anatomical site in the interpretation of tumor genetics, with implications for the therapeutic targeting of metastatic disease.

9.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352348

ABSTRACT

Introduction: Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. Methods: Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. Results: We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. Conclusions: Regions of truncal LOH are strongly retained in the presence of genetic instability, and therefore represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.

10.
NPJ Precis Oncol ; 8(1): 34, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355834

ABSTRACT

Reversion mutations that restore wild-type function of the BRCA gene have been described as a key mechanism of resistance to Poly(ADP-ribose) polymerase (PARP) inhibitor therapy in BRCA-associated cancers. Here, we report a case of a patient with metastatic castration-resistant prostate cancer (mCRPC) with a germline BRCA2 mutation who developed acquired resistance to PARP inhibition. Extensive genomic interrogation of cell-free DNA (cfDNA) and tissue at baseline, post-progression, and postmortem revealed ten unique BRCA2 reversion mutations across ten sites. While several of the reversion mutations were private to a specific site, nine out of ten tumors contained at least one mutation, suggesting a powerful clonal selection for reversion mutations in the presence of therapeutic pressure by PARP inhibition. Variable cfDNA shed was seen across tumor sites, emphasizing a potential shortcoming of cfDNA monitoring for PARPi resistance. This report provides a genomic portrait of the temporal and spatial heterogeneity of prostate cancer under the selective pressure of a PARP inhibition and exposes limitations in the current strategies for detection of reversion mutations.

11.
JCO Precis Oncol ; 8: e2300534, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38394469

ABSTRACT

PURPOSE: Intrahepatic cholangiocarcinoma (ICCA) is characterized by significant phenotypic and clinical heterogeneities and poor response to systemic therapy, potentially related to underlying heterogeneity in oncogenic alterations. We aimed to characterize the genomic heterogeneity between primary tumors and advanced disease in patients with ICCA. METHODS: Biopsy-proven CCA specimens (primary tumor and paired advanced disease [metastatic disease, progressive disease on systemic therapy, or postoperative recurrence]) from two institutions were subjected to targeted next-generation sequencing. Overall concordance (oncogenic driver mutations, copy number alterations, and fusion events) and mutational concordance (only oncogenic mutations) were compared across paired samples. A subgroup analysis was performed on the basis of exposure to systemic therapy. Patients with extrahepatic CCA (ECCA) were included as a comparison group. RESULTS: Sample pairs from 65 patients with ICCA (n = 54) and ECCA (n = 11) were analyzed. The median time between sample collection was 19.6 months (range, 2.7-122.9). For the entire cohort, the overall oncogenic concordance was 49% and the mutational concordance was 62% between primary and advanced disease samples. Subgroup analyses of ICCA and ECCA revealed overall/mutational concordance rates of 47%/58% and 60%/84%, respectively. Oncogenic concordance was similarly low for pairs exposed to systemic therapy between sample collections (n = 50, 53% overall, 68% mutational). In patients treated with targeted therapy for IDH1/2 alterations (n = 6) or FGFR2 fusions (n = 3), there was 100% concordance between the primary and advanced disease specimens. In two patients, FGFR2 (n = 1) and IDH1 (n = 1) alterations were detected de novo in the advanced disease specimens. CONCLUSION: The results reflect a high degree of heterogeneity in ICCA and argue for reassessment of the dominant driver mutations with change in disease status.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Cholangiocarcinoma/drug therapy , Mutation , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology
12.
bioRxiv ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-38328106

ABSTRACT

Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however few studies have investigated its role in neurodegenerative processes such as Alzheimer's Disease (AD). Here we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in human, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.

13.
Nature ; 626(8000): 864-873, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326607

ABSTRACT

Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.


Subject(s)
Inhibitor of Differentiation Proteins , Kupffer Cells , Neoplasms , Animals , Humans , Mice , Bone Marrow Cells/cytology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Lineage , Induced Pluripotent Stem Cells/cytology , Inhibitor of Differentiation Proteins/deficiency , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Kupffer Cells/cytology , Kupffer Cells/immunology , Kupffer Cells/metabolism , Liver/immunology , Liver/pathology , Macrophage Activation , Neoplasm Proteins , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Phagocytosis
15.
Genome Biol ; 24(1): 272, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037115

ABSTRACT

A tumor contains a diverse collection of somatic mutations that reflect its past evolutionary history and that range in scale from single nucleotide variants (SNVs) to large-scale copy-number aberrations (CNAs). However, no current single-cell DNA sequencing (scDNA-seq) technology produces accurate measurements of both SNVs and CNAs, complicating the inference of tumor phylogenies. We introduce a new evolutionary model, the constrained k-Dollo model, that uses SNVs as phylogenetic markers but constrains losses of SNVs according to clusters of cells. We derive an algorithm, ConDoR, that infers phylogenies from targeted scDNA-seq data using this model. We demonstrate the advantages of ConDoR on simulated and real scDNA-seq data.


Subject(s)
Neoplasms , Humans , Animals , Phylogeny , Neoplasms/genetics , Mutation , Algorithms , Sequence Analysis, DNA , Birds/genetics , DNA Copy Number Variations
16.
Cancer Res ; 83(22): 3796-3812, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37812025

ABSTRACT

Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE: The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Osteosarcoma/genetics , Whole Genome Sequencing , Genomics , Bone Neoplasms/genetics , Recurrence , DNA Copy Number Variations , Mutation
17.
Cancer Res ; 83(20): 3478-3491, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37526524

ABSTRACT

Understanding the rewired metabolism underlying organ-specific metastasis in breast cancer could help identify strategies to improve the treatment and prevention of metastatic disease. Here, we used a systems biology approach to compare metabolic fluxes used by parental breast cancer cells and their brain- and lung-homing derivatives. Divergent lineages had distinct, heritable metabolic fluxes. Lung-homing cells maintained high glycolytic flux despite low levels of glycolytic intermediates, constitutively activating a pathway sink into lactate. This strong Warburg effect was associated with a high ratio of lactate dehydrogenase (LDH) to pyruvate dehydrogenase (PDH) expression, which correlated with lung metastasis in patients with breast cancer. Although feature classification models trained on clinical characteristics alone were unable to predict tropism, the LDH/PDH ratio was a significant predictor of metastasis to the lung but not to other organs, independent of other transcriptomic signatures. High lactate efflux was also a trait in lung-homing metastatic pancreatic cancer cells, suggesting that lactate production may be a convergent phenotype in lung metastasis. Together, these analyses highlight the essential role that metabolism plays in organ-specific cancer metastasis and identify a putative biomarker for predicting lung metastasis in patients with breast cancer. SIGNIFICANCE: Lung-homing metastatic breast cancer cells express an elevated ratio of lactate dehydrogenase to pyruvate dehydrogenase, indicating that ratios of specific metabolic gene transcripts have potential as metabolic biomarkers for predicting organ-specific metastasis.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Neoplasms, Second Primary , Humans , Female , Breast Neoplasms/pathology , L-Lactate Dehydrogenase/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers , Lung/pathology , Lactates , Pyruvates , Melanoma, Cutaneous Malignant
18.
Sci Transl Med ; 15(706): eabq0476, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37494469

ABSTRACT

T cells are the central drivers of many inflammatory diseases, but the repertoire of tissue-resident T cells at sites of pathology in human organs remains poorly understood. We examined the site-specificity of T cell receptor (TCR) repertoires across tissues (5 to 18 tissues per patient) in prospectively collected autopsies of patients with and without graft-versus-host disease (GVHD), a potentially lethal tissue-targeting complication of allogeneic hematopoietic cell transplantation, and in mouse models of GVHD. Anatomic similarity between tissues was a key determinant of TCR repertoire composition within patients, independent of disease or transplant status. The T cells recovered from peripheral blood and spleens in patients and mice captured a limited portion of the TCR repertoire detected in tissues. Whereas few T cell clones were shared across patients, motif-based clustering revealed shared repertoire signatures across patients in a tissue-specific fashion. T cells at disease sites had a tissue-resident phenotype and were of donor origin based on single-cell chimerism analysis. These data demonstrate the complex composition of T cell populations that persist in human tissues at the end stage of an inflammatory disorder after lymphocyte-directed therapy. These findings also underscore the importance of studying T cell in tissues rather than blood for tissue-based pathologies and suggest the tissue-specific nature of both the endogenous and posttransplant T cell landscape.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Mice , Animals , T-Lymphocytes/pathology , Graft vs Host Disease/pathology , Receptors, Antigen, T-Cell
19.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37292765

ABSTRACT

Overexpression of repetitive elements is an emerging hallmark of human cancers 1 . Diverse repeats can mimic viruses by replicating within the cancer genome through retrotransposition, or presenting pathogen-associated molecular patterns (PAMPs) to the pattern recognition receptors (PRRs) of the innate immune system 2-5 . Yet, how specific repeats affect tumor evolution and shape the tumor immune microenvironment (TME) in a pro- or anti-tumorigenic manner remains poorly defined. Here, we integrate whole genome and total transcriptome data from a unique autopsy cohort of multiregional samples collected in pancreatic ductal adenocarcinoma (PDAC) patients, into a comprehensive evolutionary analysis. We find that more recently evolved S hort I nterspersed N uclear E lements (SINE), a family of retrotransposable repeats, are more likely to form immunostimulatory double-strand RNAs (dsRNAs). Consequently, younger SINEs are strongly co-regulated with RIG-I like receptor associated type-I interferon genes but anti-correlated with pro-tumorigenic macrophage infiltration. We discover that immunostimulatory SINE expression in tumors is regulated by either L ong I nterspersed N uclear E lements 1 (LINE1/L1) mobility or ADAR1 activity in a TP53 mutation dependent manner. Moreover, L1 retrotransposition activity tracks with tumor evolution and is associated with TP53 mutation status. Altogether, our results suggest pancreatic tumors actively evolve to modulate immunogenic SINE stress and induce pro-tumorigenic inflammation. Our integrative, evolutionary analysis therefore illustrates, for the first time, how dark matter genomic repeats enable tumors to co-evolve with the TME by actively regulating viral mimicry to their selective advantage.

20.
J Mol Cell Biol ; 15(6)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37327088

ABSTRACT

Chemoresistance is a primary cause of treatment failure in pancreatic cancer. Identifying cell surface markers specifically expressed in chemoresistant cancer cells (CCCs) could facilitate targeted therapies to overcome chemoresistance. We performed an antibody-based screen and found that TRA-1-60 and TRA-1-81, two 'stemness' cell surface markers, are highly enriched in CCCs. Furthermore, TRA-1-60+/TRA-1-81+ cells are chemoresistant compared to TRA-1-60-/TRA-1-81- cells. Transcriptome profiling identified UGT1A10, shown to be both necessary and sufficient to maintain TRA-1-60/TRA-1-81 expression and chemoresistance. From a high-content chemical screen, we identified Cymarin, which downregulates UGT1A10, eliminates TRA-1-60/TRA-1-81 expression, and increases chemosensitivity both in vitro and in vivo. Finally, TRA-1-60/TRA-1-81 expression is highly specific in primary cancer tissue and positively correlated with chemoresistance and short survival, which highlights their potentiality for targeted therapy. Therefore, we discovered a novel CCC surface marker regulated by a pathway that promotes chemoresistance, as well as a leading drug candidate to target this pathway.


Subject(s)
Drug Resistance, Neoplasm , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL