Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Cancer Res ; 10(2): 1025-1033, 2021 Feb.
Article in English | MEDLINE | ID: mdl-35116429

ABSTRACT

BACKGROUND: Accumulating evidences indicate that AXL overexpression or activation is associated with cancer progression and acquired resistance to targeted anti-cancer drugs such as epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Despite recent development of several drugs that target multiple receptor tyrosine kinases (RTKs), drugs that selectively target AXL signaling are extremely rare. Short nucleic acid aptamers are non-immunogenic molecules with high binding affinity and specificity to their target molecules that could potentially be used as a novel cancer treatment. METHODS: Modified-DNA aptamers were selected on the basis of its ability to bind recombinant human AXL. AXL aptamers were selected for their inhibition of AXL and then selected aptamers were tested for their use to overcome acquired resistant to EGFR-TKI on a lung cancer cell with acquired resistance to erlotinib. RESULTS: These new AXL aptamers inhibited cell viability to an extent of 30-40% in HCC827/ER cells with acquired resistance to erlotinib. The possible mechanism of overcoming the acquired resistance may be by inhibiting the activation of Akt and Erk. Although, aptamers effectively decreased cell viability of erlotinib-resistant cell line, the combination of aptamers and erlotinib did not synergistically decrease the survival of the resistant cell line. CONCLUSIONS: We developed newly modified DNA aptamers that selectively bind to AXL receptors, and assessed their efficacy in a human lung cancer cell with acquired resistance to EGFR-TKI.

2.
PLoS One ; 11(8): e0160822, 2016.
Article in English | MEDLINE | ID: mdl-27494117

ABSTRACT

Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions) and in vivo (under normoxic conditions, P = 0.041) HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Galectins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/pathology , Oligodeoxyribonucleotides/pharmacology , Animals , Apoptosis/drug effects , Aptamers, Nucleotide , Blotting, Western , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Female , Flow Cytometry , Galectins/genetics , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Nucleolin
SELECTION OF CITATIONS
SEARCH DETAIL
...