Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Int J Biol Macromol ; 273(Pt 2): 133086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871105

ABSTRACT

Variants found in the respiratory complex I (CI) subunit genes encoded by mitochondrial DNA can cause severe genetic diseases. However, it is difficult to establish a priori whether a single or a combination of CI variants may impact oxidative phosphorylation. Here we propose a computational approach based on coarse-grained molecular dynamics simulations aimed at investigating new CI variants. One of the primary CI variants associated with the Leber hereditary optic neuropathy (m.14484T>C/MT-ND6) was used as a test case and was investigated alone or in combination with two additional rare CI variants whose role remains uncertain. We found that the primary variant positioned in the E-channel region, which is fundamental for CI function, stiffens the enzyme dynamics. Moreover, a new mechanism for the transition between π- and α-conformation in the helix carrying the primary variant is proposed. This may have implications for the E-channel opening/closing mechanism. Finally, our findings show that one of the rare variants, located next to the primary one, further worsens the stiffening, while the other rare variant does not affect CI function. This approach may be extended to other variants candidate to exert a pathogenic impact on CI dynamics, or to investigate the interaction of multiple variants.


Subject(s)
Electron Transport Complex I , Molecular Dynamics Simulation , Mutation, Missense , Electron Transport Complex I/genetics , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Humans , Optic Atrophy, Hereditary, Leber/genetics , Computational Biology/methods , NADH Dehydrogenase
2.
Aging Cell ; 23(5): e14111, 2024 05.
Article in English | MEDLINE | ID: mdl-38650174

ABSTRACT

Perilipin 2 (PLIN2) is a lipid droplet (LD)-coating protein playing important roles in lipid homeostasis and suppression of lipotoxicity in different tissues and cell types. Recently, a role for PLIN2 in supporting mitochondrial function has emerged. PLIN2 dysregulation is involved in many metabolic disorders and age-related diseases. However, the exact consequences of PLIN2 dysregulation are not yet completely understood. In this study, we knocked down (KD) PLIN2 in primary human dermal fibroblasts (hDFs) from young (mean age 29 years) and old (mean age 71 years) healthy donors. We have found that PLIN2 KD caused a decline of mitochondrial function only in hDFs from young donors, while mitochondria of hDFs from old donors (that are already partially impaired) did not significantly worsen upon PLIN2 KD. This mitochondrial impairment is associated with the increased expression of the stress-related mitokine growth differentiation factor 15 (GDF15) and the induction of cell senescence. Interestingly, the simultaneous KD of PLIN2 and GDF15 abrogated the induction of cell senescence, suggesting that the increase in GDF15 is the mediator of this phenomenon. Moreover, GDF15 KD caused a profound alteration of gene expression, as observed by RNA-Seq analysis. After a more stringent analysis, this alteration remained statistically significant only in hDFs from young subjects, further supporting the idea that cells from old and young donors react differently when undergoing manipulation of either PLIN2 or GDF15 genes, with the latter being likely a downstream mediator of the former.


Subject(s)
Cellular Senescence , Down-Regulation , Fibroblasts , Growth Differentiation Factor 15 , Mitochondria , Perilipin-2 , Humans , Cellular Senescence/genetics , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Fibroblasts/metabolism , Mitochondria/metabolism , Perilipin-2/metabolism , Perilipin-2/genetics , Adult , Aged , Aging/metabolism , Aging/genetics , Cells, Cultured , Male
3.
Open Biol ; 12(11): 220198, 2022 11.
Article in English | MEDLINE | ID: mdl-36349549

ABSTRACT

Inhibition of respiratory complex I (CI) is becoming a promising anti-cancer strategy, encouraging the design and the use of inhibitors, whose mechanism of action, efficacy and specificity remain elusive. As CI is a central player of cellular bioenergetics, a finely tuned dosing of targeting drugs is required to avoid side effects. We compared the specificity and mode of action of CI inhibitors metformin, BAY 87-2243 and EVP 4593 using cancer cell models devoid of CI. Here we show that both BAY 87-2243 and EVP 4593 were selective, while the antiproliferative effects of metformin were considerably independent from CI inhibition. Molecular docking predictions indicated that the high efficiency of BAY 87-2243 and EVP 4593 may derive from the tight network of bonds in the quinone binding pocket, although in different sites. Most of the amino acids involved in such interactions are conserved across species and only rarely found mutated in human. Our data make a case for caution when referring to metformin as a CI-targeting compound, and highlight the need for dosage optimization and careful evaluation of molecular interactions between inhibitors and the holoenzyme.


Subject(s)
Metformin , Neoplasms , Humans , Molecular Docking Simulation , Electron Transport Complex I , Quinazolines , Neoplasms/drug therapy , Neoplasms/genetics , NADH Dehydrogenase
4.
Noncoding RNA ; 8(5)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36287116

ABSTRACT

Small cell neuroendocrine carcinoma is most frequently found in the lung (SCLC), but it has been also reported, albeit with a very low incidence, in the ovary. Here, we analyze a case of primary small cell carcinoma of the ovary of pulmonary type (SCCOPT), a rare and aggressive tumor with poor prognosis, whose biology and molecular features have not yet been thoroughly investigated. The patient affected by SCCOPT had a residual tumor following chemotherapy which displayed pronounced similarity with neuroendocrine tumors and lung cancer in terms of its microRNA expression profile and mTOR-downstream activation. By analyzing the metabolic markers of the neoplastic lesion, we established a likely glycolytic signature. In conclusion, this in-depth characterization of SCCOPT could be useful for future diagnoses, possibly aided by microRNA profiling, allowing clinicians to adopt the most appropriate therapeutic strategy.

5.
Sci Rep ; 12(1): 8020, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577908

ABSTRACT

Anticancer strategies aimed at inhibiting Complex I of the mitochondrial respiratory chain are increasingly being attempted in solid tumors, as functional oxidative phosphorylation is vital for cancer cells. Using ovarian cancer as a model, we show that a compensatory response to an energy crisis induced by Complex I genetic ablation or pharmacological inhibition is an increase in the mitochondrial biogenesis master regulator PGC1α, a pleiotropic coactivator of transcription regulating diverse biological processes within the cell. We associate this compensatory response to the increase in PGC1α target gene expression, setting the basis for the comprehension of the molecular pathways triggered by Complex I inhibition that may need attention as drawbacks before these approaches are implemented in ovarian cancer care.


Subject(s)
Electron Transport Complex I , Ovarian Neoplasms , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Female , Humans , Organelle Biogenesis , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Oxidative Phosphorylation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
6.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35209128

ABSTRACT

The finding that the most common mitochondrial DNA mutation m.11778G>A/MT-ND4 (p.R340H) associated with Leber's hereditary optic neuropathy (LHON) induces rotenone resistance has produced a long-standing debate, because it contrasts structural evidence showing that the ND4 subunit is far away from the quinone-reaction site in complex I, where rotenone acts. However, recent cryo-electron microscopy data revealed that rotenone also binds to the ND4 subunit. We investigated the possible structural modifications induced by the LHON mutation and found that its amino acid replacement would disrupt a possible hydrogen bond between native R340 and Q139 in ND4, thereby destabilizing rotenone binding. Our analysis thus explains rotenone resistance in LHON patients as a biochemical signature of its pathogenic effect on complex I.


Subject(s)
Alleles , Amino Acid Substitution , Drug Resistance/genetics , Electron Transport Complex I/genetics , Mutation , Optic Atrophy, Hereditary, Leber/genetics , Rotenone/pharmacology , Amino Acid Sequence , Binding Sites , Conserved Sequence , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Models, Molecular , Optic Atrophy, Hereditary, Leber/metabolism , Protein Binding , Protein Conformation , Rotenone/chemistry , Structure-Activity Relationship , Uncoupling Agents/pharmacology
7.
FEBS J ; 289(24): 8003-8019, 2022 12.
Article in English | MEDLINE | ID: mdl-34606156

ABSTRACT

Mitochondria act as key organelles in cellular bioenergetics and biosynthetic processes producing signals that regulate different molecular networks for proliferation and cell death. This ability is also preserved in pathologic contexts such as tumorigenesis, during which bioenergetic changes and metabolic reprogramming confer flexibility favoring cancer cell survival in a hostile microenvironment. Although different studies epitomize mitochondrial dysfunction as a protumorigenic hit, genetic ablation or pharmacological inhibition of respiratory complex I causing a severe impairment is associated with a low-proliferative phenotype. In this scenario, it must be considered that despite the initial delay in growth, cancer cells may become able to resume proliferation exploiting molecular mechanisms to overcome growth arrest. Here, we highlight the current knowledge on molecular responses activated by complex I-defective cancer cells to bypass physiological control systems and to re-adapt their fitness during microenvironment changes. Such adaptive mechanisms could reveal possible novel molecular players in synthetic lethality with complex I impairment, thus providing new synergistic strategies for mitochondrial-based anticancer therapy.


Subject(s)
Electron Transport Complex I , Neoplasms , Humans , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Mitochondria/metabolism , Energy Metabolism/genetics , Carcinogenesis/metabolism , Tumor Microenvironment/genetics
8.
Nat Cardiovasc Res ; 1(7): 617-633, 2022 Jul.
Article in English | MEDLINE | ID: mdl-39196236

ABSTRACT

In mammals, the physiological activation of the glucocorticoid receptor (GR) by glucocorticoids (GCs) promotes the maturation of cardiomyocytes during late gestation, but the effect on postnatal cardiac growth and regenerative plasticity is unclear. Here we demonstrate that the GC-GR axis restrains cardiomyocyte proliferation during postnatal development. Cardiomyocyte-specific GR ablation in conditional knockout (cKO) mice delayed the postnatal cardiomyocyte cell cycle exit, hypertrophic growth and cytoarchitectural maturation. GR-cKO hearts showed increased expression of genes involved in glucose catabolism and reduced expression of genes promoting fatty acid oxidation and mitochondrial respiration. Accordingly, oxygen consumption in GR-cKO cardiomyocytes was less dependent on fatty acid oxidation, and glycolysis inhibition reverted GR-cKO effects on cardiomyocyte proliferation. GR ablation or transient pharmacological inhibition after myocardial infarction in juvenile and/or adult mice facilitated cardiomyocyte survival, cell cycle re-entry and division, leading to cardiac muscle regeneration along with reduced scar formation. Thus, GR restrains heart regeneration and may represent a therapeutic target.

9.
Cells ; 10(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34831144

ABSTRACT

While somatic disruptive mitochondrial DNA (mtDNA) mutations that severely affect the respiratory chain are counter-selected in most human neoplasms, they are the genetic hallmark of indolent oncocytomas, where they appear to contribute to reduce tumorigenic potential. A correlation between mtDNA mutation type and load, and the clinical outcome of a tumor, corroborated by functional studies, is currently lacking. Recurrent familial oncocytomas are extremely rare entities, and they offer the chance to investigate the determinants of oncocytic transformation and the role of both germline and somatic mtDNA mutations in cancer. We here report the first family with Hyperparathyroidism-Jaw Tumor (HPT-JT) syndrome showing the inherited predisposition of four individuals to develop parathyroid oncocytic tumors. MtDNA sequencing revealed a rare ribosomal RNA mutation in the germline of all HPT-JT affected individuals whose pathogenicity was functionally evaluated via cybridization technique, and which was counter-selected in the most aggressive infiltrating carcinoma, but positively selected in adenomas. In all tumors different somatic mutations accumulated on this genetic background, with an inverse clear-cut correlation between the load of pathogenic mtDNA mutations and the indolent behavior of neoplasms, highlighting the importance of the former both as modifiers of cancer fate and as prognostic markers.


Subject(s)
Adenoma/genetics , DNA, Mitochondrial/genetics , Fibroma/genetics , Hyperparathyroidism/genetics , Jaw Neoplasms/genetics , Mutation/genetics , Parathyroid Neoplasms/genetics , Parathyroid Neoplasms/pathology , Base Sequence , Humans , Phenotype , Ribosomes/metabolism
10.
Cell Rep ; 35(3): 109002, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882309

ABSTRACT

Complex I (CI) is the largest enzyme of the mitochondrial respiratory chain, and its defects are the main cause of mitochondrial disease. To understand the mechanisms regulating the extremely intricate biogenesis of this fundamental bioenergetic machine, we analyze the structural and functional consequences of the ablation of NDUFS3, a non-catalytic core subunit. We show that, in diverse mammalian cell types, a small amount of functional CI can still be detected in the complete absence of NDUFS3. In addition, we determine the dynamics of CI disassembly when the amount of NDUFS3 is gradually decreased. The process of degradation of the complex occurs in a hierarchical and modular fashion in which the ND4 module remains stable and bound to TMEM126A. We, thus, uncover the function of TMEM126A, the product of a disease gene causing recessive optic atrophy as a factor necessary for the correct assembly and function of CI.


Subject(s)
Electron Transport Complex I/genetics , Membrane Proteins/genetics , Mitochondria/genetics , NADH Dehydrogenase/genetics , Optic Atrophy/genetics , Animals , Binding Sites , CRISPR-Cas Systems , Cell Line, Tumor , Electron Transport Complex I/deficiency , Gene Editing , Gene Expression Regulation , Gene Knockout Techniques , HCT116 Cells , Humans , Melanocytes/metabolism , Melanocytes/pathology , Membrane Proteins/metabolism , Mice , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Models, Molecular , NADH Dehydrogenase/deficiency , Optic Atrophy/metabolism , Optic Atrophy/pathology , Osteoblasts/metabolism , Osteoblasts/pathology , Protein Binding , Protein Conformation , Proteomics
11.
Semin Cell Dev Biol ; 98: 26-33, 2020 02.
Article in English | MEDLINE | ID: mdl-31175937

ABSTRACT

The thriving field that constitutes cancer metabolism has unveiled some groundbreaking facts over the past two decades, at the heart of which is the TCA cycle and its intermediates. As such and besides its metabolic role, α-ketoglutarate was shown to withstand a wide range of physiological reactions from protection against oxidative stress, collagen and bone maintenance to development and immunity. Most importantly, it constitutes the rate-limiting substrate of 2-oxoglutarate-dependent dioxygenases family enzymes, which are involved in hypoxia sensing and in the shaping of cellular epigenetic landscape, two major drivers of oncogenic transformation. Based on literature reports, we hereby review the benefits of this metabolite as a possible novel adjuvant therapeutic opportunity to target tumor progression. This article is part of the special issue "Mitochondrial metabolic alterations in cancer cells and related therapeutic targets".


Subject(s)
Ketoglutaric Acids/metabolism , Neoplasms/metabolism , Animals , Disease Progression , Humans , Mitochondria/metabolism , Neoplasms/pathology
12.
J Clin Med ; 8(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835761

ABSTRACT

A cogent issue in cancer research is how to account for the effects of tumor microenvironment (TME) on the response to therapy, warranting the need to adopt adequate in vitro and in vivo models. This is particularly relevant in the development of strategies targeting cancer metabolism, as they will inevitably have systemic effects. For example, inhibition of mitochondrial complex I (CI), despite showing promising results as an anticancer approach, triggers TME-mediated survival mechanisms in subcutaneous osteosarcoma xenografts, a response that may vary according to whether the tumors are induced via subcutaneous injection or by intrabone orthotopic transplantation. Thus, with the aim to characterize the TME of CI-deficient tumors in a model that more faithfully represents osteosarcoma development, we set up a humanized bone niche ectopic graft. A prominent involvement of TME was revealed in CI-deficient tumors, characterized by the abundance of cancer associated fibroblasts, tumor associated macrophages and preservation of osteocytes and osteoblasts in the mineralized bone matrix. The pseudo-orthotopic approach allowed investigation of osteosarcoma progression in a bone-like microenvironment setting, without being invasive as the intrabone cell transplantation. Additionally, establishing osteosarcomas in a humanized bone niche model identified a peculiar association between targeting CI and bone tissue preservation.

13.
Int J Mol Sci ; 20(12)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242642

ABSTRACT

The ketogenic diet (KD), a high-fat/low-carbohydrate/adequate-protein diet, has been proposed as a treatment for a variety of diseases, including cancer. KD leads to generation of ketone bodies (KBs), predominantly acetoacetate (AcAc) and 3-hydroxy-butyrate, as a result of fatty acid oxidation. Several studies investigated the antiproliferative effects of lithium acetoacetate (LiAcAc) and sodium 3-hydroxybutyrate on cancer cells in vitro. However, a critical point missed in some studies using LiAcAc is that Li ions have pleiotropic effects on cell growth and cell signaling. Thus, we tested whether Li ions per se contribute to the antiproliferative effects of LiAcAc in vitro. Cell proliferation was analyzed on neuroblastoma, renal cell carcinoma, and human embryonic kidney cell lines. Cells were treated for 5 days with 2.5, 5, and 10 mM LiAcAc and with equimolar concentrations of lithium chloride (LiCl) or sodium chloride (NaCl). LiAcAc affected the growth of all cell lines, either negatively or positively. However, the effects of LiAcAc were always similar to those of LiCl. In contrast, NaCl showed no effects, indicating that the Li ion impacts cell proliferation. As Li ions have significant effects on cell growth, it is important for future studies to include sources of Li ions as a control.


Subject(s)
Acetoacetates/pharmacology , Lithium/pharmacology , Caspase 3/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Chlorides/pharmacology , Gene Expression , Humans , Lithium Chloride/pharmacology
14.
Nat Commun ; 10(1): 903, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30796225

ABSTRACT

Converting carcinomas in benign oncocytomas has been suggested as a potential anti-cancer strategy. One of the oncocytoma hallmarks is the lack of respiratory complex I (CI). Here we use genetic ablation of this enzyme to induce indolence in two cancer types, and show this is reversed by allowing the stabilization of Hypoxia Inducible Factor-1 alpha (HIF-1α). We further show that on the long run CI-deficient tumors re-adapt to their inability to respond to hypoxia, concordantly with the persistence of human oncocytomas. We demonstrate that CI-deficient tumors survive and carry out angiogenesis, despite their inability to stabilize HIF-1α. Such adaptive response is mediated by tumor associated macrophages, whose blockage improves the effect of CI ablation. Additionally, the simultaneous pharmacological inhibition of CI function through metformin and macrophage infiltration through PLX-3397 impairs tumor growth in vivo in a synergistic manner, setting the basis for an efficient combinatorial adjuvant therapy in clinical trials.


Subject(s)
Adenoma, Oxyphilic/drug therapy , Adenoma, Oxyphilic/genetics , Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Metformin/pharmacology , Pyrroles/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Drosophila , Female , Gene Knockout Techniques , HCT116 Cells , Humans , Macrophages/immunology , Mice , Mice, Knockout , Mice, Nude , NADH Dehydrogenase/genetics , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays
15.
RSC Adv ; 9(27): 15350-15356, 2019 May 14.
Article in English | MEDLINE | ID: mdl-35514834

ABSTRACT

A fluorescent derivative of trehalose with two dansyl groups (DAT) has been synthesized. It is characterised by a large Stokes shift, good permeability in human living cells and a well detectable fluorescent signal within the cells. Notably, in intestinal cells DAT is sequestered in vesicles induced by trehalose pre-treatment and colocalizes with lipid droplets.

16.
Neurobiol Dis ; 124: 14-28, 2019 04.
Article in English | MEDLINE | ID: mdl-30389403

ABSTRACT

Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but adult mice showed signs of cerebellar ataxia detectable by beam test. Although cerebellar pathology was negative, electrophysiological analysis showed a trend towards increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was altered, with greatly reduced expression of fusogenic Opa1 isoforms. Mitochondrial alterations were also detected in cerebella of 18-month-old heterozygous mutants and may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.


Subject(s)
ATP-Dependent Proteases/genetics , ATPases Associated with Diverse Cellular Activities/genetics , Disease Models, Animal , Mitochondria/metabolism , Spinocerebellar Ataxias/congenital , Animals , Female , Gene Knock-In Techniques , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Mutation, Missense , Purkinje Cells/physiology , Purkinje Cells/ultrastructure , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology
17.
Genes (Basel) ; 9(5)2018 May 07.
Article in English | MEDLINE | ID: mdl-29735924

ABSTRACT

Mitochondrial respiratory function is now recognized as a pivotal player in all the aspects of cancer biology, from tumorigenesis to aggressiveness and chemotherapy resistance. Among the enzymes that compose the respiratory chain, by contributing to energy production, redox equilibrium and oxidative stress, complex I assumes a central role. Complex I defects may arise from mutations in mitochondrial or nuclear DNA, in both structural genes or assembly factors, from alteration of the expression levels of its subunits, or from drug exposure. Since cancer cells have a high-energy demand and require macromolecules for proliferation, it is not surprising that severe complex I defects, caused either by mutations or treatment with specific inhibitors, prevent tumor progression, while contributing to resistance to certain chemotherapeutic agents. On the other hand, enhanced oxidative stress due to mild complex I dysfunction drives an opposite phenotype, as it stimulates cancer cell proliferation and invasiveness. We here review the current knowledge on the contribution of respiratory complex I to cancer biology, highlighting the double-edged role of this metabolic enzyme in tumor progression, metastasis formation, and response to chemotherapy.

18.
Int J Cancer ; 143(7): 1706-1719, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29672841

ABSTRACT

Familial aggregation is a significant risk factor for the development of thyroid cancer and familial non-medullary thyroid cancer (FNMTC) accounts for 5-7% of all NMTC. Whole exome sequencing analysis in the family affected by FNMTC with oncocytic features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous mutation (c.400G > A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F p.Gly134Ser protein, we observed an altered mitochondrial network, with increased mitochondrial mass and a significant increase in both intracellular and extracellular reactive oxygen species, compared to cells expressing the wild-type (wt) protein or carrying the empty vector. The mutation conferred a significant advantage in colony formation, invasion and anchorage-independent growth. These data were corroborated by in vivo studies in zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole vertebrate embryos, compared to the wt one. MYO1F screening in additional 192 FNMTC families identified another variant in exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the first time a role for MYO1F in NMTC.


Subject(s)
Cell Proliferation , Embryo, Nonmammalian/pathology , Mitochondria/pathology , Mutation , Myosin Type I/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Cells, Cultured , Child , Chromosomes, Human, Pair 19 , Embryo, Nonmammalian/metabolism , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Myosin Type I/chemistry , Myosin Type I/metabolism , Oxygen Consumption , Pedigree , Protein Conformation , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Young Adult , Zebrafish
19.
Int J Mol Sci ; 19(3)2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29518970

ABSTRACT

Mammalian respiratory complex I (CI) biogenesis requires both nuclear and mitochondria-encoded proteins and is mostly organized in respiratory supercomplexes. Among the CI proteins encoded by the mitochondrial DNA, NADH-ubiquinone oxidoreductase chain 1 (ND1) is a core subunit, evolutionary conserved from bacteria to mammals. Recently, ND1 has been recognized as a pivotal subunit in maintaining the structural and functional interaction among the hydrophilic and hydrophobic CI arms. A critical role of human ND1 both in CI biogenesis and in the dynamic organization of supercomplexes has been depicted, although the proof of concept is still missing and the critical amount of ND1 protein necessary for a proper assembly of both CI and supercomplexes is not defined. By exploiting a unique model in which human ND1 is allotopically re-expressed in cells lacking the endogenous protein, we demonstrated that the lack of this protein induces a stall in the multi-step process of CI biogenesis, as well as the alteration of supramolecular organization of respiratory complexes. We also defined a mutation threshold for the m.3571insC truncative mutation in mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1), below which CI and its supramolecular organization is recovered, strengthening the notion that a certain amount of human ND1 is required for CI and supercomplexes biogenesis.


Subject(s)
Alleles , Electron Transport Complex I/chemistry , Electron Transport Complex I/genetics , Mutation , NADH Dehydrogenase/chemistry , NADH Dehydrogenase/genetics , Cell Respiration , DNA, Mitochondrial/genetics , Electron Transport Complex I/metabolism , Mitochondria/genetics , Mitochondria/metabolism , NADH Dehydrogenase/metabolism , Oxygen Consumption , Protein Binding , Structure-Activity Relationship
20.
PLoS Genet ; 14(2): e1007210, 2018 02.
Article in English | MEDLINE | ID: mdl-29444077

ABSTRACT

We here report on the existence of Leber's hereditary optic neuropathy (LHON) associated with peculiar combinations of individually non-pathogenic missense mitochondrial DNA (mtDNA) variants, affecting the MT-ND4, MT-ND4L and MT-ND6 subunit genes of Complex I. The pathogenic potential of these mtDNA haplotypes is supported by multiple evidences: first, the LHON phenotype is strictly inherited along the maternal line in one very large family; second, the combinations of mtDNA variants are unique to the two maternal lineages that are characterized by recurrence of LHON; third, the Complex I-dependent respiratory and oxidative phosphorylation defect is co-transferred from the proband's fibroblasts into the cybrid cell model. Finally, all but one of these missense mtDNA variants cluster along the same predicted fourth E-channel deputed to proton translocation within the transmembrane domain of Complex I, involving the ND1, ND4L and ND6 subunits. Hence, the definition of the pathogenic role of a specific mtDNA mutation becomes blurrier than ever and only an accurate evaluation of mitogenome sequence variation data from the general population, combined with functional analyses using the cybrid cell model, may lead to final validation. Our study conclusively shows that even in the absence of a clearly established LHON primary mutation, unprecedented combinations of missense mtDNA variants, individually known as polymorphisms, may lead to reduced OXPHOS efficiency sufficient to trigger LHON. In this context, we introduce a new diagnostic perspective that implies the complete sequence analysis of mitogenomes in LHON as mandatory gold standard diagnostic approach.


Subject(s)
DNA, Mitochondrial/genetics , Multifactorial Inheritance , Mutation, Missense , Optic Atrophy, Hereditary, Leber/genetics , Penetrance , Adult , Amino Acid Sequence , Electron Transport Complex I/chemistry , Electron Transport Complex I/genetics , Epistasis, Genetic , Family , Female , Genes, Mitochondrial , Humans , Male , Models, Molecular , NADH Dehydrogenase/chemistry , NADH Dehydrogenase/genetics , Pedigree , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL