Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
bioRxiv ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38746096

Cells regulate their shape and metabolic activity in response to the mechano-chemical properties of their microenvironment. To elucidate the impact of matrix stiffness and ligand density on a cell's bioenergetics, we developed a non-equilibrium, active chemo-mechanical model that accounts for mechanical energy of the cell and matrix, chemical energy from ATP hydrolysis, interfacial energy, and mechano-sensitive regulation of stress fiber assembly through signaling. By integrating the kinetics and energetics of these processes we introduce the concept of the metabolic potential of the cell that, when minimized, gives experimentally testable predictions of the cell contractility, shape, and the ATP consumption. Specifically, we show that MDA-MB-231 breast cancer cells in 3D collagen gels follow a spherical to spindle to spherical change in morphology with increasing matrix stiffness consistent with experimental observations. This biphasic transition in cell shape emerges from a competition between increased contractility accompanied by ATP hydrolysis enabled by mechano-sensitive signaling, which lowers the volumetric contribution to the metabolic potential of elongated cells and the interfacial energy which is lower for spherical shapes. On 2D hydrogels, our model predicts a hemispherical to spindle to disc shape transition with increasing gel stiffness. In both cases, we show that increasing matrix stiffness monotonically increases the cell's contractility as well as ATP consumption. Our model also predicts how the increased energy demand in stiffer microenvironments is met by AMPK activation, which is confirmed through experimental measurement of activated AMPK levels as a function of matrix stiffness carried out here in both 2D and 3D micro-environments. Further, model predictions of increased AMPK activation on stiffer micro-environments are found to correlate strongly with experimentally measured upregulation of mitochondrial potential, glucose uptake and ATP levels. The insights from our model can be used to understand mechanosensitive regulation of metabolism in physiological events such as metastasis and tumor progression during which cells experience dynamic changes in their microenvironment and metabolic state.

2.
bioRxiv ; 2023 Nov 11.
Article En | MEDLINE | ID: mdl-37986921

The cell nucleus is continuously exposed to external signals, of both chemical and mechanical nature. To ensure proper cellular response, cells need to regulate not only the transmission of these signals, but also their timing and duration. Such timescale regulation is well described for fluctuating chemical signals, but if and how it applies to mechanical signals reaching the nucleus is still unknown. Here we demonstrate that the formation of fibrillar adhesions locks the nucleus in a mechanically deformed conformation, setting the mechanical response timescale to that of fibrillar adhesion remodelling (~1 hour). This process encompasses both mechanical deformation and associated mechanotransduction (such as via YAP), in response to both increased and decreased mechanical stimulation. The underlying mechanism is the anchoring of the vimentin cytoskeleton to fibrillar adhesions and the extracellular matrix through plectin 1f, which maintains nuclear deformation. Our results reveal a mechanism to regulate the timescale of mechanical adaptation, effectively setting a low pass filter to mechanotransduction.

...