Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
medRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38947035

ABSTRACT

Background: Intermittent preventive treatment for malaria in pregnancy (IPTp) can improve birth outcomes, but whether it confers benefits to postnatal growth is unclear. We investigated the effect of IPTp on infant growth in Uganda and its pathways of effects using causal mediation analyses. Methods: We analyzed data from 633 infants born to mothers enrolled in a randomized trial of monthly IPTp with dihydroartemisinin-piperaquine (DP) vs sulfadoxine-pyrimethamine (SP) (NCT02793622). Weight and length were measured from 0-12 months of age. Using generalized linear models, we estimated effects of DP vs. SP on gravidity-stratified mean length-for-age (LAZ) and weight-for-length Z-scores (WLZ). We investigated mediation by placental malaria, gestational weight change, maternal anemia, maternal inflammation-related proteins, preterm birth, birth length, and birth weight. Mediation models adjusted for infant sex, gravidity, gestational age at enrollment, maternal age, maternal parasitemia at enrollment, education, and wealth. Findings: SP increased LAZ by 0.18-0.28 Z from birth through age 4 months compared to DP, while DP increased WLZ by 0.11-0.28 Z from 2-8 months compared to SP among infants of multigravidae. We did not observe these differences among primigravida. Mediators of SP included increased birth weight and length and maternal stem cell factor at delivery. Mediators of DP included placental malaria and birth length, maternal IL-18, CDCP1, and CD6 at delivery. Interpretation: In high malaria transmission settings, different IPTp regimens influenced infant growth among multigravidae through distinct pathways in the period of exclusive breastfeeding, when few other interventions are available. Funding: Stanford Center for Innovation and Global Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bill & Melinda Gates Foundation. Research in context: Evidence before this study: Intermittent Preventive Treatment in Pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is recommended by the WHO for regions with moderate-to-high malaria transmission. While SP is effective in reducing neonatal mortality and low birth weight, its efficacy has diminished in some areas of sub-Saharan Africa due to widespread parasite resistance to SP. Although IPTp with dihydroartemisinin-piperaquine (IPTp-DP) has demonstrated superior efficacy in reducing malaria in pregnancy, its impact on birth outcomes has not significantly surpassed that of SP. The ultimate goal of IPTp extends beyond enhancing birth outcomes to include benefits during infancy and later stages. Yet, the effects of SP vs. DP in relation to infant growth post-birth and the underlying mechanisms remain unknown. Prior studies also found that different IPTp regimens worked through different pathways, with DP influencing birth outcomes by reducing placental malaria and SP influencing them through non-malarial pathways such as maternal weight gain. Here, we re-analyzed data from of a randomized trial in Uganda to explore the impacts of these two IPTp regimens on infant growth and to understand potential mechanisms underlying its impacts on infant growth.Added value of this study: This study quantified how IPTp with SP compared to DP influenced infants' growth trajectories, both ponderal and linear, during the first year of life. We found that SP improved linear growth of infants up to age 4 months compared to DP, and DP improved ponderal growth of infants from 2-8 months compared to SP among babies who were born to multigravidae. In addition, we identified birth size, placental malaria, and certain markers of maternal inflammation measured at delivery using the Olink Target 96 inflammation panel as pathways through which IPTp influenced infant growth. Our approach provides new insights into effects of IPTp beyond birth and the mechanisms by which IPTp impacts infant growth.Implications of all the available evidence: Our study provides evidence that different IPTp regimens can influence infant postnatal growth through distinct pathways. Our findings highlight the potential of combined SP and DP IPTp regimens and bolster the evidence base for continued delivery of IPTp to improve maternal and child health outcomes, particularly in malaria-endemic regions.

2.
bioRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38948732

ABSTRACT

Sex differences have been observed in acute COVID-19 and Long COVID (LC) outcomes, with greater disease severity and mortality during acute infection in males and a greater proportion of females developing LC. We hypothesized that sex-specific immune dysregulation contributes to the pathogenesis of LC. To investigate the immunologic underpinnings of LC development and persistence, we used single-cell transcriptomics, single-cell proteomics, and plasma proteomics on blood samples obtained during acute SARS-CoV-2 infection and at 3 and 12 months post-infection in a cohort of 45 patients who either developed LC or recovered. Several sex-specific immune pathways were associated with LC. Specifically, males who would develop LC at 3 months had widespread increases in TGF-ß signaling during acute infection in proliferating NK cells. Females who would develop LC demonstrated increased expression of XIST , an RNA gene implicated in autoimmunity, and increased IL1 signaling in monocytes at 12 months post infection. Several immune features of LC were also conserved across sexes. Both males and females with LC had reduced co-stimulatory signaling from monocytes and broad upregulation of NF-κB transcription factors. In both sexes, those with persistent LC demonstrated increased LAG3, a marker of T cell exhaustion, reduced ETS1 transcription factor expression across lymphocyte subsets, and elevated intracellular IL-4 levels in T cell subsets, suggesting that ETS1 alterations may drive an aberrantly elevated Th2-like response in LC. Altogether, this study describes multiple innate and adaptive immune correlates of LC, some of which differ by sex, and offers insights toward the pursuit of tailored therapeutics. One Sentence Summary: This multi-omic analysis of Long COVID reveals sex differences and immune correlates of Long COVID development, persistence, and resolution.

3.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895251

ABSTRACT

Plasmodium falciparum infections elicit strong humoral immune responses to two main groups of antigens expressed by blood-stage parasites: merozoite antigens that are involved in the erythrocyte invasion process and variant surface antigens that mediate endothelial sequestration of infected erythrocytes. Long-lived B cells against both antigen classes can be detected in the circulation for years after exposure, but have not been directly compared. Here, we studied the phenotype of long-lived memory and atypical B cells to merozoite antigens (MSP1 and AMA1) and variant surface antigens (the CIDRα1 domain of PfEMP1) in Ugandan adults before and after local reduction of P. falciparum transmission. After a median of 1.7 years without P. falciparum infections, the percentage of antigen-specific activated B cells declined, but long-lived antigen-specific B cells were still detectable in all individuals. The majority of MSP1/AMA1-specific B cells were CD95+CD11c+ memory B cells, which are primed for rapid differentiation into antibody-secreting cells, and FcRL5-T-bet- atypical B cells. On the other hand, most CIDRα1-specific B cells were CD95-CD11c- memory B cells. CIDRα1-specific B cells were also enriched among a subset of atypical B cells that seem poised for antigen presentation. These results point to differences in how these antigens are recognized or processed by the immune system and how P. falciparum-specific B cells will respond upon re-infection.

4.
JAMA Intern Med ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848477

ABSTRACT

Importance: There is an urgent need to identify treatments for postacute sequelae of SARS-CoV-2 infection (PASC). Objective: To assess the efficacy of a 15-day course of nirmatrelvir-ritonavir in reducing the severity of select PASC symptoms. Design, Setting, and Participants: This was a 15-week blinded, placebo-controlled, randomized clinical trial conducted from November 2022 to September 2023 at Stanford University (California). The participants were adults with moderate to severe PASC symptoms of 3 months or longer duration. Interventions: Participants were randomized 2:1 to treatment with oral nirmatrelvir-ritonavir (NMV/r, 300 mg and 100 mg) or with placebo-ritonavir (PBO/r) twice daily for 15 days. Main Outcomes and Measures: Primary outcome was a pooled severity of 6 PASC symptoms (fatigue, brain fog, shortness of breath, body aches, gastrointestinal symptoms, and cardiovascular symptoms) based on a Likert scale score at 10 weeks. Secondary outcomes included symptom severity at different time points, symptom burden and relief, patient global measures, Patient-Reported Outcomes Measurement Information System (PROMIS) measures, orthostatic vital signs, and sit-to-stand test change from baseline. Results: Of the 155 participants (median [IQR] age, 43 [34-54] years; 92 [59%] females), 102 were randomized to the NMV/r group and 53 to the PBO/r group. Nearly all participants (n = 153) had received the primary series for COVID-19 vaccination. Mean (SD) time between index SARS-CoV-2 infection and randomization was 17.5 (9.1) months. There was no statistically significant difference in the model-derived severity outcome pooled across the 6 core symptoms at 10 weeks between the NMV/r and PBO/r groups. No statistically significant between-group differences were found at 10 weeks in the Patient Global Impression of Severity or Patient Global Impression of Change scores, summative symptom scores, and change from baseline to 10 weeks in PROMIS fatigue, dyspnea, cognitive function, and physical function measures. Adverse event rates were similar in NMV/r and PBO/r groups and mostly of low grade. Conclusions and Relevance: The results of this randomized clinical trial showed that a 15-day course of NMV/r in a population of patients with PASC was generally safe but did not demonstrate a significant benefit for improving select PASC symptoms in a mostly vaccinated cohort with protracted symptom duration. Further studies are needed to determine the role of antivirals in the treatment of PASC. Trial Registration: ClinicalTrials.gov Identifier: NCT05576662.

5.
Nat Rev Immunol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862638

ABSTRACT

Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.

6.
Nat Commun ; 15(1): 5497, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944658

ABSTRACT

Children in malaria-endemic regions can experience repeated Plasmodium infections over short periods of time. Effects of re-infection on multiple co-existing CD4+ T cell subsets remain unresolved. Here, we examine antigen-experienced CD4+ T cells during re-infection in mice, using scRNA-seq/TCR-seq and spatial transcriptomics. TCR transgenic TEM cells initiate rapid Th1/Tr1 recall responses prior to proliferating, while GC Tfh counterparts are refractory, with TCM/Tfh-like cells exhibiting modest non-proliferative responses. Th1-recall is a partial facsimile of primary Th1-responses, with no upregulated effector-associated genes being unique to recall. Polyclonal, TCR-diverse, CD4+ T cells exhibit similar recall dynamics, with individual clones giving rise to multiple effectors including highly proliferative Th1/Tr1 cells, as well as GC Tfh and Tfh-like cells lacking proliferative capacity. Thus, we show substantial diversity in recall responses mounted by multiple co-existing CD4+ T cell subsets in the spleen, and present graphical user interfaces for studying gene expression dynamics and clonal relationships during re-infection.


Subject(s)
CD4-Positive T-Lymphocytes , Malaria , Reinfection , Animals , Malaria/immunology , Malaria/parasitology , CD4-Positive T-Lymphocytes/immunology , Mice , Reinfection/immunology , Th1 Cells/immunology , Mice, Inbred C57BL , Spleen/immunology , Spleen/parasitology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Mice, Transgenic , Female , Immunologic Memory
7.
medRxiv ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38798524

ABSTRACT

Importance: The effect of montelukast in reducing symptom duration among outpatients with mild to moderate coronavirus disease 2019 (COVID-19) is uncertain. Objective: To assess the effectiveness of montelukast compared with placebo in treating outpatients with mild to moderate COVID-19. Design Setting and Participants: The ACTIV-6 platform randomized clinical trial aims to evaluate the effectiveness of repurposed medications in treating mild to moderate COVID-19. Between January 27, 2023, and June 23, 2023, 1250 participants ≥30 years of age with confirmed SARS-CoV-2 infection and ≥2 acute COVID-19 symptoms for ≤7 days, were included across 104 US sites to evaluate the use of montelukast. Interventions: Participants were randomized to receive montelukast 10 mg once daily or matched placebo for 14 days. Main Outcomes and Measures: The primary outcome was time to sustained recovery (defined as at least 3 consecutive days without symptoms). Secondary outcomes included time to death; time to hospitalization or death; a composite of hospitalization, urgent care visit, emergency department visit, or death; COVID clinical progression scale; and difference in mean time unwell. Results: Among participants who were randomized and received study drug, the median age was 53 years (IQR 42-62), 60.2% were female, 64.6% identified as Hispanic/Latino, and 56.3% reported ≥2 doses of a SARS-CoV-2 vaccine. Among 628 participants who received montelukast and 622 who received placebo, differences in time to sustained recovery were not observed (adjusted hazard ratio [HR] 1.02; 95% credible interval [CrI] 0.92-1.12; P(efficacy) = 0.63]). Unadjusted median time to sustained recovery was 10 days (95% confidence interval 10-11) in both groups. No deaths were reported and 2 hospitalizations were reported in each group; 36 participants reported healthcare utilization events (a priori defined as death, hospitalization, emergency department/urgent care visit); 18 in the montelukast group compared with 18 in the placebo group (HR 1.01; 95% CrI 0.45-1.84; P(efficacy)=0.48). Five participants experienced serious adverse events (3 with montelukast and 2 with placebo). Conclusions and Relevance: Among outpatients with mild to moderate COVID-19, treatment with montelukast does not reduce duration of COVID-19 symptoms. Trial Registration: ClinicalTrials.gov ( NCT04885530 ).

8.
medRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559091

ABSTRACT

Background: Tororo District, Uganda experienced a dramatic decrease in malaria burden from 2015-19 following 5 years of indoor residual spraying (IRS) with carbamate (Bendiocarb) and then organophosphate (Actellic) insecticides. However, a marked resurgence occurred in 2020, which coincided with a change to a clothianidin-based IRS formulations (Fludora Fusion/SumiShield). To quantify the magnitude of the resurgence, investigate causes, and evaluate the impact of a shift back to IRS with Actellic in 2023, we assessed changes in malaria metrics in regions within and near Tororo District. Methods: Malaria surveillance data from Nagongera Health Center, Tororo District was included from 2011-2023. In addition, a cohort of 667 residents from 84 houses was followed from August 2020 through September 2023 from an area bordering Tororo and neighboring Busia District, where IRS has never been implemented. Cohort participants underwent passive surveillance for clinical malaria and active surveillance for parasitemia every 28 days. Mosquitoes were collected in cohort households every 2 weeks using CDC light traps. Female Anopheles were speciated and tested for sporozoites and phenotypic insecticide resistance. Temporal comparisons of malaria metrics were stratified by geographic regions. Findings: At Nagongera Health Center average monthly malaria cases varied from 419 prior to implementation of IRS; to 56 after 5 years of IRS with Bendiocarb and Actellic; to 1591 after the change in IRS to Fludora Fusion/SumiShield; to 155 after a change back to Actellic. Among cohort participants living away from the border in Tororo, malaria incidence increased over 8-fold (0.36 vs. 2.97 episodes per person year, p<0.0001) and parasite prevalence increased over 4-fold (17% vs. 70%, p<0.0001) from 2021 to 2022 when Fludora Fusion/SumiShield was used. Incidence decreased almost 5-fold (2.97 vs. 0.70, p<0.0001) and prevalence decreased by 39% (70% vs. 43%, p<0.0001) after shifting back to Actellic. There was a similar pattern among those living near the border in Tororo, with increased incidence between 2021 and 2022 (0.93 vs. 2.40, p<0.0001) followed by a decrease after the change to Actellic (2.40 vs. 1.33, p<0.001). Among residents of Busia, malaria incidence did not change significantly over the 3 years of observation. Malaria resurgence in Tororo was temporally correlated with the replacement of An. gambiae s.s. by An. funestus as the primary vector, with a marked decrease in the density of An. funestus following the shift back to IRS with Actellic. In Busia, An. gambiae s.s. remained the primary vector throughout the observation period. Sporozoite rates were approximately 50% higher among An. funestus compared to the other common malaria vectors. Insecticide resistance phenotyping of An. funestus revealed high tolerance to clothianidin, but full susceptibility to Actellic. Conclusions: A dramatic resurgence of malaria in Tororo was temporally associated with a change to clothianidin-based IRS formulations and emergence of An. funestus as the predominant vector. Malaria decreased after a shift back to IRS with Actellic. This study highlights the ability of malaria vectors to rapidly circumvent control efforts and the importance of high-quality surveillance systems to assess the impact of malaria control interventions and generate timely, actionable data.

9.
Open Forum Infect Dis ; 11(4): ofae143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585183

ABSTRACT

Background: Trials evaluating antimalarials for intermittent preventive treatment in pregnancy (IPTp) have shown that dihydroartemisinin-piperaquine (DP) is a more efficacious antimalarial than sulfadoxine-pyrimethamine (SP); however, SP is associated with higher birthweight, suggesting that SP demonstrates "nonmalarial" effects. Chemoprevention of nonmalarial febrile illnesses (NMFIs) was explored as a possible mechanism. Methods: In this secondary analysis, we leveraged data from 654 pregnant Ugandan women without HIV infection who participated in a randomized controlled trial comparing monthly IPTp-SP with IPTp-DP. Women were enrolled between 12 and 20 gestational weeks and followed through delivery. NMFIs were measured by active and passive surveillance and defined by the absence of malaria parasitemia. We quantified associations among IPTp regimens, incident NMFIs, antibiotic prescriptions, and birthweight. Results: Mean "birthweight for gestational age" Z scores were 0.189 points (95% CI, .045-.333) higher in women randomized to IPTp-SP vs IPTp-DP. Women randomized to IPTp-SP had fewer incident NMFIs (incidence rate ratio, 0.74; 95% CI, .58-.95), mainly respiratory NMFIs (incidence rate ratio, 0.69; 95% CI, .48-1.00), vs IPTp-DP. Counterintuitively, respiratory NMFI incidence was positively correlated with birthweight in multigravidae. In total 75% of respiratory NMFIs were treated with antibiotics. Although overall antibiotic prescriptions were similar between arms, for each antibiotic prescribed, "birthweight for gestational age" Z scores increased by 0.038 points (95% CI, .001-.074). Conclusions: Monthly IPTp-SP was associated with reduced respiratory NMFI incidence, revealing a potential nonmalarial mechanism of SP and supporting current World Health Organization recommendations for IPTp-SP, even in areas with high-grade SP resistance. While maternal respiratory NMFIs are known risk factors of lower birthweight, most women in our study were presumptively treated with antibiotics, masking the potential benefit of SP on birthweight mediated through preventing respiratory NMFIs.

10.
iScience ; 26(12): 108496, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38098745

ABSTRACT

Atypical B cells are a population of activated B cells that are commonly enriched in individuals with chronic immune activation but are also part of a normal immune response to infection or vaccination. To better define the role of atypical B cells in the human adaptive immune response, we performed single-cell sequencing of transcriptomes, cell surface markers, and B cell receptors in individuals with chronic exposure to the malaria parasite Plasmodium falciparum, a condition known to lead to accumulation of circulating atypical B cells. We identified three previously uncharacterized populations of atypical B cells with distinct transcriptional and functional profiles and observed marked differences among these three subsets in their ability to produce immunoglobulin G upon T-cell-dependent activation. Our findings help explain the conflicting observations in prior studies regarding the function of atypical B cells and highlight their different roles in the adaptive immune response in chronic inflammatory conditions.

11.
EClinicalMedicine ; 65: 102250, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37855026

ABSTRACT

Background: With the emergence of SARS-CoV-2 variants resistant to monoclonal antibody therapies and limited global access to therapeutics, the evaluation of novel therapeutics to prevent progression to severe COVID-19 remains a critical need. Methods: Safety, clinical and antiviral efficacy of inhaled interferon-ß1a (SNG001) were evaluated in a phase II randomized controlled trial on the ACTIV-2/A5401 platform (ClinicalTrials.govNCT04518410). Adult outpatients with confirmed SARS-CoV-2 infection within 10 days of symptom onset were randomized and initiated either orally inhaled nebulized SNG001 given once daily for 14 days (n = 110) or blinded pooled placebo (n = 110) between February 10 and August 18, 2021. Findings: The proportion of participants reporting premature treatment discontinuation was 9% among SNG001 and 13% among placebo participants. There were no differences between participants who received SNG001 or placebo in the primary outcomes of treatment emergent Grade 3 or higher adverse events (3.6% and 8.2%, respectively), time to symptom improvement (median 13 and 9 days, respectively), or proportion with unquantifiable nasopharyngeal SARS-CoV-2 RNA at days 3 (28% [26/93] vs. 39% [37/94], respectively), 7 (65% [60/93] vs. 66% [62/94]) and 14 (91% [86/95] vs. 91% [83/81]). There were fewer hospitalizations with SNG001 (n = 1; 1%) compared with placebo (n = 7; 6%), representing an 86% relative risk reduction (p = 0.07). There were no deaths in either arm. Interpretation: In this trial, SNG001 was safe and associated with a non-statistically significant decrease in hospitalization for COVID-19 pneumonia. Funding: The ACTIV-2 platform study is funded by the NIH. Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UM1 AI068634, UM1 AI068636 and UM1 AI106701. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

12.
Cancer Res ; 83(23): 3861-3867, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37668528

ABSTRACT

International cancer registries make real-world genomic and clinical data available, but their joint analysis remains a challenge. AACR Project GENIE, an international cancer registry collecting data from 19 cancer centers, makes data from >130,000 patients publicly available through the cBioPortal for Cancer Genomics (https://genie.cbioportal.org). For 25,000 patients, additional real-world longitudinal clinical data, including treatment and outcome data, are being collected by the AACR Project GENIE Biopharma Collaborative using the PRISSMM data curation model. Several thousand of these cases are now also available in cBioPortal. We have significantly enhanced the functionalities of cBioPortal to support the visualization and analysis of this rich clinico-genomic linked dataset, as well as datasets generated by other centers and consortia. Examples of these enhancements include (i) visualization of the longitudinal clinical and genomic data at the patient level, including timelines for diagnoses, treatments, and outcomes; (ii) the ability to select samples based on treatment status, facilitating a comparison of molecular and clinical attributes between samples before and after a specific treatment; and (iii) survival analysis estimates based on individual treatment regimens received. Together, these features provide cBioPortal users with a toolkit to interactively investigate complex clinico-genomic data to generate hypotheses and make discoveries about the impact of specific genomic variants on prognosis and therapeutic sensitivities in cancer. SIGNIFICANCE: Enhanced cBioPortal features allow clinicians and researchers to effectively investigate longitudinal clinico-genomic data from patients with cancer, which will improve exploration of data from the AACR Project GENIE Biopharma Collaborative and similar datasets.


Subject(s)
Genomics , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine
13.
Curr Top Microbiol Immunol ; 441: 185-208, 2023.
Article in English | MEDLINE | ID: mdl-37695429

ABSTRACT

Despite the high burden of malaria worldwide, there is surprisingly scarce research on sex-based differences in malaria outside of pregnancy. A more thorough understanding of sexual dimorphism in malaria, and what underlies these sex-based differences, could elucidate the underlying mechanisms driving malaria pathogenesis and has the potential to inform malaria control efforts, including new vaccines. This review summarizes our current understanding of sex-based differences in the epidemiology of malaria across the lifespan, potential sex- or gender-based mechanisms driving these differences, and the knowledge gaps that need to be addressed.


Subject(s)
Longevity , Malaria , Female , Pregnancy , Humans , Sex Characteristics , Malaria/epidemiology , Malaria/prevention & control
14.
EBioMedicine ; 95: 104772, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37634385

ABSTRACT

BACKGROUND: Malaria in pregnancy (MIP) causes higher morbidity in primigravid compared to multigravid women; however, the correlates and mechanisms underlying this gravidity-dependent protection remain incompletely understood. We aimed to compare the cellular immune response between primigravid and multigravid women living in a malaria-endemic region and assess for correlates of protection against MIP. METHODS: We characterised the second trimester cellular immune response among 203 primigravid and multigravid pregnant women enrolled in two clinical trials of chemoprevention in eastern Uganda, utilizing RNA sequencing, flow cytometry, and functional assays. We compared responses across gravidity and determined associations with parasitaemia during pregnancy and placental malaria. FINDINGS: Using whole blood RNA sequencing, no significant differentially expressed genes were identified between primigravid (n = 12) and multigravid (n = 11) women overall (log 2(FC) > 2, FDR < 0.1). However, primigravid (n = 49) women had higher percentages of malaria-specific, non-naïve CD4+ T cells that co-expressed IL-10 and IFNγ compared with multigravid (n = 85) women (p = 0.000023), and higher percentages of these CD4+ T cells were associated with greater risks of parasitaemia in pregnancy (Rs = 0.49, p = 0.001) and placental malaria (p = 0.0073). These IL-10 and IFNγ co-producing CD4+ T cells had a genomic signature of Tr1 cells, including expression of transcription factors cMAF and BATF and cell surface makers CTLA4 and LAG-3. INTERPRETATION: Malaria-specific Tr1 cells were highly prevalent in primigravid Ugandan women, and their presence correlated with a higher risk of malaria in pregnancy. Understanding whether suppression of Tr1 cells plays a role in naturally acquired gravidity-dependent immunity may aid the development of new vaccines or treatments for MIP. FUNDING: This work was funded by NIH (PO1 HD059454, U01 AI141308, U19 AI089674, U01 AI155325, U01 AI150741), the March of Dimes (Basil O'Connor award), and the Bill and Melinda Gates Foundation (OPP 1113682).


Subject(s)
Interleukin-10 , T-Lymphocytes, Regulatory , Pregnancy , Female , Humans , Gravidity , Placenta , CD4-Positive T-Lymphocytes
15.
Appl Environ Microbiol ; 89(7): e0058323, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37404180

ABSTRACT

Microbial source tracking (MST) identifies sources of fecal contamination in the environment using host-associated fecal markers. While there are numerous bacterial MST markers that can be used herein, there are few such viral markers. Here, we designed and tested novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States. Next, we developed two novel probe-based reverse transcription-PCR (RT-PCR) assays based on conserved regions of the ToBRFV genome and tested the markers' sensitivities and specificities using human and non-human animal stool as well as wastewater. The ToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a commonly used viral marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We used the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, these results indicate that ToBRFV is a promising viral human-associated MST marker. IMPORTANCE Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of host-associated MST markers. Here, we designed and tested novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool and highly abundant in human stool and wastewater samples.


Subject(s)
Solanum lycopersicum , Wastewater , Animals , Fruit , Biomarkers , Feces/microbiology , Environmental Monitoring/methods
16.
PLOS Glob Public Health ; 3(5): e0001675, 2023.
Article in English | MEDLINE | ID: mdl-37134083

ABSTRACT

Causes of non-malarial fevers in sub-Saharan Africa remain understudied. We hypothesized that metagenomic next-generation sequencing (mNGS), which allows for broad genomic-level detection of infectious agents in a biological sample, can systematically identify potential causes of non-malarial fevers. The 212 participants in this study were of all ages and were enrolled in a longitudinal malaria cohort in eastern Uganda. Between December 2020 and August 2021, respiratory swabs and plasma samples were collected at 313 study visits where participants presented with fever and were negative for malaria by microscopy. Samples were analyzed using CZ ID, a web-based platform for microbial detection in mNGS data. Overall, viral pathogens were detected at 123 of 313 visits (39%). SARS-CoV-2 was detected at 11 visits, from which full viral genomes were recovered from nine. Other prevalent viruses included Influenza A (14 visits), RSV (12 visits), and three of the four strains of seasonal coronaviruses (6 visits). Notably, 11 influenza cases occurred between May and July 2021, coinciding with when the Delta variant of SARS-CoV-2 was circulating in this population. The primary limitation of this study is that we were unable to estimate the contribution of bacterial microbes to non-malarial fevers, due to the difficulty of distinguishing bacterial microbes that were pathogenic from those that were commensal or contaminants. These results revealed the co-circulation of multiple viral pathogens likely associated with fever in the cohort during this time period. This study illustrates the utility of mNGS in elucidating the multiple potential causes of non-malarial febrile illness. A better understanding of the pathogen landscape in different settings and age groups could aid in informing diagnostics, case management, and public health surveillance systems.

17.
Elife ; 122023 05 26.
Article in English | MEDLINE | ID: mdl-37233729

ABSTRACT

With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis. In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/complications , Disease Progression , SARS-CoV-2
18.
Immunogenetics ; 75(3): 207-214, 2023 06.
Article in English | MEDLINE | ID: mdl-37084013

ABSTRACT

In modern medicine, vaccination is one of the most effective public health strategies to prevent infectious diseases. Indisputably, vaccines have saved millions of lives by reducing the burden of many serious infections such as polio, tuberculosis, measles, pneumonia, and tetanus. Despite the recent recommendation by the World Health Organization (WHO) to roll out RTS,S/AS01, this malaria vaccine still faces major challenges of variability in its efficacy partly due to high genetic variation in humans and malaria parasites. Immune responses to malaria vary between individuals and populations. Human genetic variation in immune system genes is the probable cause for this heterogeneity. In this review, we will focus on human genetic factors that determine variable responses to vaccination and how variation in immune system genes affect the immunogenicity and efficacy of the RTS,S/AS01 vaccine.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Infant , Africa , Genetic Variation
19.
Immunity ; 56(4): 864-878.e4, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36996809

ABSTRACT

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.


Subject(s)
COVID-19 , Vaccines , Humans , CD8-Positive T-Lymphocytes , BNT162 Vaccine , SARS-CoV-2 , Vaccination , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...