Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-487988

ABSTRACT

The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies have uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 entry and fusion independent of transmembrane protease serine 2 expression in multiple cell types. We also demonstrate a role for ACAT in regulating SARS-CoV-2 RNA replication in primary bronchial epithelial cells. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled in the acute phase of infection. Thus, re-purposing of available ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-484379

ABSTRACT

Understanding the host pathways that define susceptibility to SARS-CoV-2 infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in Syrian hamsters. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced the levels of infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-450133

ABSTRACT

Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, sub-genomic RNAs and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=200 SRC="FIGDIR/small/450133v2_ufig1.gif" ALT="Figure 1"> View larger version (55K): org.highwire.dtl.DTLVardef@10f7bf1org.highwire.dtl.DTLVardef@192214dorg.highwire.dtl.DTLVardef@c84916org.highwire.dtl.DTLVardef@1366287_HPS_FORMAT_FIGEXP M_FIG C_FIG In briefBy detecting nearly all individual SARS-CoV-2 RNA molecules, we quantified viral replication and defined cell susceptibility to infection. We discovered that a minority of cells show significantly elevated viral RNA levels and observed slower replication kinetics for the Alpha variant relative to the Victoria strain. Highlights O_LISingle molecule quantification of SARS-CoV-2 replication uncovers early infection kinetics C_LIO_LIThere is substantial heterogeneity between cells in rates of SARS-CoV-2 replication C_LIO_LIGenomic RNA is stable and persistent during the initial stages of infection C_LIO_LIB.1.1.7 variant replicates more slowly than the Victoria strain C_LI

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-437757

ABSTRACT

The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with Molecular Dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5 UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in the stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel antiviral agents.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-436163

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2 coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract, via Spike glycoprotein binding angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organisms response to its environment and can regulate host susceptibility to virus infection. We demonstrate a circadian regulation of ACE2 in lung epithelial cells and show that silencing BMAL1 or treatment with a synthetic REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry. Treating infected cells with SR9009 limits viral replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced a wide spectrum of interferon stimulated genes in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to dampen SARS-CoV-2 infection. Our study suggests new approaches to understand and improve therapeutic targeting of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL