Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Article in English | MEDLINE | ID: mdl-39382807

ABSTRACT

This study evaluates the composition and seasonal characteristics of fine particulate matter (PM2.5) during winter and summer through simultaneous measurements conducted at the Gwangju Institute of Science and Technology in South Korea and the Changping campus of Peking University in China. PM2.5 samples were concurrently collected at both sites, and chemical analyses were conducted to quantify various components, including carbonaceous materials, ionic species, and metals. Although the average PM2.5 concentrations were comparable between the two sites, there were distinct differences in the concentrations of major components. Organic indicator compounds were analyzed to discern the contributions of primary and secondary pollution sources. Changping displayed a mix of primary and secondary pollution, characterized by higher concentrations of primary organic carbon (POC) such as polycyclic aromatic hydrocarbons and hopanes, compared to Gwangju. In contrast, Gwangju demonstrated a higher prevalence of secondary organic carbon (SOC), particularly water-soluble organic carbon not related to biomass burning (WSOCnbb) and various polar organic compounds. The organic mass to organic carbon (OM/OC) ratios estimated using the mass balance method revealed significant differences, with Gwangju showing a higher ratio of 2.3 compared to 1.9 at Changping, indicating a greater influence of secondary pollutants at Gwangju. Additionally, both Changping and Gwangju exhibited higher OM/OC ratios in summer (Changping: 2.0, Gwangju: 2.5) compared to winter (Changping: 1.8, Gwangju: 2.2), indicating seasonal differences in organic mass contributions to PM2.5. These findings underscore the importance of accounting for spatial and seasonal variations in air pollution studies and suggest that updating commonly used OM/OC ratios could enhance the reliability of research outcomes.

2.
Environ Sci Ecotechnol ; 22: 100458, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39175511

ABSTRACT

Organic matter is crucial in aerosol-climate interactions, yet the physicochemical properties and origins of organic aerosols remain poorly understood. Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer, emphasizing their connection to transport patterns and particle size distribution. Microbial-derived organic matter (MOM) and terrestrial-derived organic matter (TOM) accounted for over 90% of the total organic mass in Arctic aerosols during these seasons, comprising carbohydrate/protein-like and lignin/tannin-like compounds, respectively. In spring, aerosols showed high TOM and low MOM intensities due to biomass-burning influx in the central Arctic. In contrast, summer exhibited elevated MOM intensity, attributed to the shift in predominant atmospheric transport from the central Arctic to the biologically active Greenland Sea. MOM and TOM were associated with Aitken mode particles (<100 nm diameter) and accumulation mode particles (>100 nm diameter), respectively. This association is linked to the molecular size of biomolecules, impacting the number concentrations of corresponding aerosol classes. These findings highlight the importance of considering seasonal atmospheric transport patterns and organic source-dependent particle size distributions in assessing aerosol properties in the changing Arctic.

3.
J Agric Food Chem ; 72(38): 20981-20990, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39148227

ABSTRACT

Fulvic acids (FAs) have been commercially used in cosmetics and agronomy due to their unique biological activities, such as plant stimulation and anti-inflammatory effects. However, the extraction sources of FAs, such as peat, are currently limited. Consequently, new extraction methods using renewable resources need to be developed, while reproducing the biological functions. Here, ionic liquids (ILs) effectively extracted fulvic-like substances (FLSs) from wood sawdust. The overall molecular weight distributions of FLSs were similar to those of commercial FAs, and key organic groups (e.g., aromatic, phenolic, and methoxy groups) were also found to be shared between commercial FAs and FLSs. Detailed compositional analysis revealed by high-resolution mass spectrometry showed that the extracts contain both lignin-like and lipid-like molecules, while commercial FAs are biased toward lignin-like and carbohydrate-like molecules. FLSs generally showed better and similar performance in radical scavenging activity against ABTS+· and H2O2. Fibroblast proliferation and lettuce growth enhancements were also observed with the extract containing 1-ethyl-3-methylimidazolium acetate and triethylammonium hydrogen sulfate, respectively, which performed better than commercial FAs. Immunofluorescence staining of in vitro human follicle dermal papilla cells supports that coexpression of hair growth-related proteins can be accelerated with FLSs, and this effect was further evidenced by in vivo mouse model experiments. Finally, the reusability of ILs in the extraction process was confirmed by analyzing the structural features of FLSs from each recycling. Our findings indicate that ILs are useful for obtaining biologically functional fulvic analogs from renewable plant sources.


Subject(s)
Benzopyrans , Ionic Liquids , Wood , Ionic Liquids/chemistry , Benzopyrans/chemistry , Benzopyrans/pharmacology , Benzopyrans/isolation & purification , Wood/chemistry , Animals , Humans , Mice , Cell Proliferation/drug effects , Fibroblasts/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification
4.
Anal Chem ; 96(31): 12616-12621, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38967042

ABSTRACT

Electron energy-loss spectroscopy (EELS) is widely used in analyzing the electronic structure of inorganic materials at high spatial resolution. In this study, we use a monochromator to improve the energy resolution, allowing us to analyze the electronic structure of organic light-emitting diode (OLED) materials with greater precision. This study demonstrates the use of the energy-loss near-edge structure to map the nitrogen content of organic molecules and identify the distinct bonding characteristics of aromatic carbon and pyridinic nitrogen. Furthermore, we integrate EELS with time-of-flight secondary ion mass spectrometry for molecular mapping of three different bilayers composed of OLED materials. This approach allows us to successfully map functional groups in the by-layer OLED and measure the thickness of two OLED layers. This study introduces spatially resolved functional group analysis using electron beam spectroscopy and contributes to the development of methods for complete nanoscale analysis of organic multilayer architectures.

5.
Sci Total Environ ; 927: 172147, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569966

ABSTRACT

Soil organic matter (SOM) plays a pivotal role in enhancing physical and biological characteristics of soil. Humic substances constitute a substantial proportion of SOM and their increase can improve crop yields and promote agricultural sustainability. While previous research has primarily assessed the influence that humic acids (HAs) derived from natural water have on soil structure, our study focuses on the impact of HAs on soil aggregation under different fertilizer regimes. During the summer cropping season, maize was cultivated under organic and synthetic fertilizer treatments. The organic fertilizer treatment utilized barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa R.) as an organic amendment five days prior to maize planting. The synthetic treatment included a synthetic fertilizer (NPK) applied at South Korea's recommended rates. The organic treatment resulted in significant improvements in the soil aggregates and stability (mean weight diameter, MWD; p < 0.05) compared to the synthetic fertilizer application. These improvements could be primarily attributed to the increased quantity and quality of HAs in the soil derived from the organic amendment. The amount of extracted HAs in the organic treatment was nearly twice that of the synthetic treatment. Additionally, the organic treatment had a 140 % larger MWD and a 40 % increase in total phenolic content compared to the synthetic treatment. The organic treatment also had an increased macronutrient uptake (p < 0.001), an 11 % increase in aboveground maize biomass, and a 21 % increase in grain yield relative to the synthetic treatment. Thus, the enhancement of HA properties through the incorporation of fresh organic manure can both directly and indirectly increase crop productivity.


Subject(s)
Fertilizers , Humic Substances , Soil , Zea mays , Humic Substances/analysis , Soil/chemistry , Zea mays/growth & development , Republic of Korea , Agriculture/methods
6.
Environ Pollut ; 349: 123870, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38548153

ABSTRACT

Ulaanbaatar (UB), the fast-growing capital of Mongolia, is known for its world's worst level of particulate matter (PM) concentrations in winter. However, current anthropogenic emission inventories over the UB are based on data from more than fifteen years ago, and satellite observations are scarce because UB is in high latitudes. During the winter of 2020-21, the first period of the Fine Particle Research Initiative in East Asia considering the National Differences (FRIEND), several times higher concentrations of PM in UB compared to other urban sites in East Asia were observed but not reproduced with a chemical transport model mainly due to the underestimated anthropogenic emissions. Therefore, we devised a method for sequentially adjusting emissions based on the reactivity of PM precursors using ground observations. We scaled emission rates for the inert species (CO, elemental carbon (EC), and organic carbon (OC)) to reproduce their observed ambient concentrations, followed by SO2 to reproduce the concentration of SO42-, which was examined to have the least uncertainty based on the abundance of observed NH3, and finally NO and NH3 for NO3-, and NH4+. This improved estimation is compared to regional inventories for Asia and suggests more than an order of magnitude increase in anthropogenic emissions in UB. Using the improved emission inventory, we were able to successfully reproduce independent observation data on PM2.5 concentrations in UB in December 2021 from the U.S. Embassy. During the campaign period, we found more than 50% of the SO42-, NO3-, and NH4+ increased in UB due to the improvement could travel to Beijing, China (BJ), and about 20% of the SO42- could travel to Noto, Japan (NT), more than 3000 km away. Also, the anthropogenic emissions in UB can effectively increase OC, NO3-, and NH4+ concentrations in BJ when Gobi dust storms occur.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Seasons , Air Pollutants/analysis , Mongolia , Particulate Matter/analysis , Environmental Monitoring/methods , Air Pollution/statistics & numerical data , Anthropogenic Effects
7.
Sci Total Environ ; 924: 171516, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38458451

ABSTRACT

The hygroscopicity of PM2.5 particles plays an important role in PM2.5 haze in Northeast Asian countries by influencing particle growth and chemical composition. New particle formation (NPF) and atmospheric volatile organic compounds (VOCs) are factors that influence particle hygroscopicity. However, the lack of real-time hygroscopicity measurements has deterred the understanding of their effects on particle hygroscopicity. In this study, two intensive monitoring campaigns were conducted during the summer of 2021 and spring of 2022 using real-time aerosol instruments, including a humidified tandem differential mobility analyzer (HTDMA), in Seosan, Republic of Korea. The hygroscopicity parameter κ was calculated from the real-time HTDMA measurement data (κGf). The diurnal variations in κGf exhibited strong inverse linear correlations with the total concentration of VOCs (CTVOC) during the two campaigns. The higher atmospheric CTVOC in summer increased the growth rate of the particle diameter from 10 to 40 nm (6 nm/h) compared with that in spring (2.7 nm/h), resulting in a faster change in κGf for 40-nm particles in summer than in spring because of the increase in organic matter in the chemical compositions of particles. In addition, NPF events introduced additional tiny fresh particles into the atmosphere, which reduced the κGf of 40-nm particles and increased the intensity of the less hygroscopic peaks (κGf < 0.1) of κ-probability density functions (κ-PDF) in NPF days. However, 100-nm particles exhibited fewer changes in κGf than 40-nm particles, resulting in additional dominant hygroscopic peaks (κ âˆ¼ 0.2) of κ-PDFs in both NPF and non-NPF days. When κGf values measured in Seosan were compared with those in other Northeast Asian countries in the literature, the κ values for 40-nm particles were lower than those (κ > 0.2) measured in Beijing and Guangzhou, but those for 100-nm particles were close to those measured in the two cities.

8.
Front Plant Sci ; 15: 1333035, 2024.
Article in English | MEDLINE | ID: mdl-38318498

ABSTRACT

Red chili pepper (Capsicum annuum L.), which belongs to the Solanaceae family, contains a variety of phytochemicals with health-promoting properties including capsaicinoids, phenolics and fatty acids. Red chili pepper is one of the most consumed vegetables in Korea and occupies the largest cultivated area among spices. In this study, the ethanolic extracts from two Korean local cultivars, namely Subicho and Eumseong, were analyzed using a hybrid trapped ion mobility Q-TOF mass spectrometer equipped with a UPLC system, and their phytochemical profiles were then compared with those of a common phytophthora disease-resistant cultivar called Dokbulwang, which is extensively used for red chili pepper powder in public spaces across Korea. Utilizing high-resolution ion-mobility Q-TOF MS analysis, 458 and 192 compounds were identified from the three different red chili peppers in positive and negative ion modes, respectively, by matching with a reference spectral library. Principal component analysis revealed clear distinctions among the three cultivars, allowing us to identify key phytochemical components responsible for discriminating the local cultivars from the public cultivar. Furthermore, the assessment of total flavonoid, phenolic, and antioxidant activity in the red pepper extracts, highlighted their diverse molecular and chemical profiles. Despite the higher total flavonoid and phenolic content values observed in the public cultivar, the radical scavenging rate was higher in the local cultivars, particularly in Subicho. This suggest the presence of stronger antioxidant compounds in the local cultivar, indicating their potential health benefits due to their rich content of bioactive compounds. Notably, the local cultivars exhibited significantly higher proportions of organic compounds (more than four times) and terpenoids (more than two times) compared to the public cultivar. Specifically, higher levels of five major capsaicinoid compounds were found in the local cultivars when compared to the public cultivar. The observed disparities in phytochemical composition and antioxidant activities indicate the molecular diversity present among these cultivars. Further exploration of the bioactive compounds in these local cultivars could prove invaluable for the development of native crops, potentially leading to the discovery of novel sources of bioactive molecules for various applications in health and agriculture.

9.
Heliyon ; 10(3): e25310, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356560

ABSTRACT

Toxicological data and exposure levels of fine particulate matters (PM2.5) are necessary to better understand their health effects. Simultaneous measurements of PM2.5 oxidative potential (OP) and cell toxicity in urban areas (Beijing, China and Gwangju, Korea) reveal their dependence on chemical composition. Notably, acids (Polar), benzocarboxylic acids, and Pb were the chemical components that affected both OP and cell toxicity. OP varied more significantly among different locations and seasons (winter and summer) than cell toxicity. Using the measured OP, cell toxicity, and PM2.5 concentration, a health index was developed to better assess the potential health effects of PM2.5. The health index was related to the sources of PM2.5 derived from the measured chemical components. The contributions of secondary organic aerosols and dust to the proposed health index were more significant than their contributions to PM2.5 mass. The developed regression equation was used to predict the health effect of PM2.5 without further toxicity measurements. This new index could be a valuable health metric that provides information beyond just the PM2.5 concentration level.

10.
Bioresour Technol ; 395: 130355, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272145

ABSTRACT

In this study, the goal was to enhance the tolerance of Clostridium acetobutylicum ATCC 824 to biomass-based inhibitory compounds for biohydrogen production and evaluate various known genes that enhance the production of biochemicals in various hosts. The introduction of phaP, the major polyhydroxyalkanoate granule-associated protein that has been reported as a chaperone-like protein resulted in increased tolerance to inhibitors and leads to higher levels of hydrogen production, cell growth, and glucose consumption in the presence of these inhibitors. It was observed that the introduction of phaP led to an increase in the transcription of the hydrogenase gene, whereas transcription of the chaperone functional genes decreased compared to the wild type. Finally, the introduction of phaP could significantly enhance biohydrogen production by 2.6-fold from lignocellulosic hydrolysates compared to that of wild type. These findings suggested that the introduction of phaP could enhance growth and biohydrogen production, even in non-polyhydroxyalkanoate-producing strains.


Subject(s)
Clostridium acetobutylicum , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Plant Lectins/genetics , Plant Lectins/metabolism , Fermentation , Hydrogen/metabolism
11.
Nat Commun ; 15(1): 576, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233386

ABSTRACT

The diversity of intrinsic traits of different organic matter molecules makes it challenging to predict how they, and therefore the global carbon cycle, will respond to climate change. Here we develop an indicator of compositional-level environmental response for dissolved organic matter to quantify the aggregated response of individual molecules that positively and negatively associate with warming. We apply the indicator to assess the thermal response of sediment dissolved organic matter in 480 aquatic microcosms along nutrient gradients on three Eurasian mountainsides. Organic molecules consistently respond to temperature change within and across contrasting climate zones. At a compositional level, dissolved organic matter in warmer sites has a stronger thermal response and shows functional reorganization towards molecules with lower thermodynamic favorability for microbial decomposition. The thermal response is more sensitive to warming at higher nutrients, with increased sensitivity of up to 22% for each additional 1 mg L-1 of nitrogen loading. The utility of the thermal response indicator is further confirmed by laboratory experiments and reveals its positive links to greenhouse gas emissions.

12.
Water Res ; 251: 121155, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38277827

ABSTRACT

Terrestrial inputs and subsequent degradation of dissolved organic matter (DOM) in lake ecosystems can result in rapid depletion of dissolved oxygen (DO). Inputs of terrestrial DOM including organic acids can also lead to decreases in pH. However, to date, few studies have investigated the linkages between terrestrial DOM inputs, DO and pH levels in the water column, and carbon dioxide (CO2) emissions from lake ecosystems. Based on monthly field sampling campaigns across 100 sites in Lake Qiandao, a major man-made drinking water reservoir in China, from May 2020 to April 2021, we estimated an annual CO2 efflux (FCO2) of 37.2 ± 29.0 gC m-2 yr-1, corresponding to 0.02 ± 0.02 TgC yr-1 from this lake. FCO2 increased significantly with decreasing DO, chlorophyll-a (Chl-a) and δ2H-H2O, while FCO2 increased with increasing specific UV absorbance (SUVA254) and a terrestrial humic-like component (C2). We found that DO concentration and pH declined with increasing terrestrial DOM inputs, i.e. increased SUVA254 and terrestrial humic-like C2 levels. Vertical profile sampling revealed that the partial pressure of CO2 (pCO2) increased with increasing terrestrial DOM fluorescence (FDOM), while DO, pH, and δ13C-CO2 declined with increasing terrestrial FDOM. These results highlight the importance of terrestrial DOM inputs in altering physico-chemical environments and fueling CO2 emissions from this lake and potentially other aquatic ecosystems.


Subject(s)
Dissolved Organic Matter , Drinking Water , Humans , Carbon Dioxide , Ecosystem , Lakes , China , Hydrogen-Ion Concentration , Spectrometry, Fluorescence
13.
Water Res ; 249: 120955, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38071902

ABSTRACT

Rivers receive, transport, and are reactors of terrestrial dissolved organic matter (DOM) and are highly influenced by changes in hydrological conditions and anthropogenic disturbances, but the effect of DOM composition on the dynamics of the bacterial community in rivers is poorly understood. We conducted a seasonal field sampling campaign at two eutrophic river mouth sites to examine how DOM composition influences the temporal dynamics of bacterial community networks, assembly processes, and DOM-bacteria associations. DOM composition and seasonal factors explained 34.7% of the variation in bacterial community composition, and 14.4% was explained purely by DOM composition where specific UV absorbance (SUVA254) as an indicator of aromaticity was the most important predictor. Significant correlations were observed between SUVA254 and the topological features of subnetworks of interspecies and DOM-bacteria associations, indicating that high DOM aromaticity results in more complex and connected networks of bacteria. The bipartite networks between bacterial taxa and DOM molecular formulae (identified by ultrahigh-resolution mass spectrometry) further revealed less specialized bacterial processing of DOM molecular formulae under the conditions of high water level and DOM aromaticity in summer than in winter. A shift in community assembly processes from stronger homogeneous selection in summer to higher stochasticity in winter correlated with changes in DOM composition, and more aromatic DOM was associated with greater similarity in bacterial community composition. Our results highlight the importance of DOM aromaticity as a predictor of the temporal dynamics of riverine bacterial community networks and assembly.


Subject(s)
Dissolved Organic Matter , Rivers , Rivers/chemistry , Bacteria , Seasons
14.
Sci Total Environ ; 901: 165917, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37527716

ABSTRACT

This paper presents comparative study on the composition and sources of PM2.5 in Ulaanbaatar, Beijing, and Seoul. Ultrahigh performance liquid chromatography (UPLC) combined with ultrahigh resolution mass spectrometry (UHR-MS) were employed to analyze 85 samples collected in winter. The obtained 340 spectra were interpreted with artificial neural network (ANN). PM2.5 mass concentrations in Ulaanbaatar were significantly higher than those in Beijing and Seoul. ANN based interpretation of UPLC UHR-MS data showed that aliphatic/lipid derived organo­sulfur compounds, polycyclic aromatic and organo­oxygen compounds were characteristic to Ulaanbaatar. Whereas, aliphatic/lipid-derived organo­oxygen compounds were major components in Beijing and Seoul. Aromatic organo­nitrogen compounds were the main contributors to differentiating the spectra obtained from Beijing from the other cities. Based on two-dimensional gas chromatography/high resolution mass spectrometric (GCxGC/HRMS) data, it was determined that the concentrations of the polycyclic aromatic hydrocarbon (PAH) and polycyclic aromatic sulfur heterocycle (PASH) containing sulfur were highest in Ulaanbaatar, followed by Beijing and Seoul. Coal/biomass combustion was identified as the primary source of contamination in Ulaanbaatar, while petroleum combustion was the main contributor to PM2.5 in Beijing and Seoul. The conclusion that diesel-powered heavy-duty trucks and buses are the main contributors to NOx emissions in Beijing is consistent with previous reports. This study provides a more comprehensive understanding of the composition and sources of PM2.5 in the three cities, with a focus on the differences in their atmospheric pollution profiles based on the UPLC UHR-MS and ANN analysis. It is notable that this study is the first to utilize this method on a large-scale sample set, providing a more detailed and molecular-level understanding of the compositional differences among PM2.5. Overall, the study contributes to a better understanding of the sources and composition of PM2.5 in Northeast Asia, which is essential for developing effective strategies to reduce air pollution and improve public health.

15.
Environ Sci Technol ; 57(11): 4668-4678, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36892554

ABSTRACT

Alpine river and lake systems on the Tibetan Plateau are highly sensitive indicators and amplifiers of global climate change and important components of the carbon cycle. Dissolved organic matter (DOM) encompasses organic carbon in aquatic systems, yet knowledge about DOM variation throughout the river-lake aquatic continuum within alpine regions is limited. We used optical spectroscopy, ultrahigh-resolution mass spectrometry (Fourier transform ion cyclotron resonance mass spectrometry), and stable water isotopic measurements to evaluate linkages between DOM composition and hydrological connection. We investigated glacial influences on DOM composition throughout the watershed of Selin Co, including upstream glacier-fed rivers and downstream-linked lakes. We found that the dissolved organic carbon concentration increased, whereas specific ultraviolet absorbance (SUVA254) decreased along the river-lake continuum. Relative to rivers, the downstream lakes had low relative abundances of polyphenolic and condensed aromatic compounds and humic-like substances but increased relative abundances of aliphatics and protein-like compounds. SUVA254 decreased while protein-like components increased with enriched stable water isotope δ2H-H2O, indicating that DOM aromaticity declined while autochthonous production increased along the flow paths. Glacier meltwater contributed to elevated relative abundances of aliphatic and protein-like compounds in headwater streams, while increased relative abundances of aromatics and humic-like DOM were found in glacier-fed lakes than downstream lakes. We conclude that changes in hydrological conditions, including glacier melt driven by a warming climate, will significantly alter DOM composition and potentially their biogeochemical function in surface waters on the Tibetan Plateau.


Subject(s)
Dissolved Organic Matter , Hydrology , Lakes , Dissolved Organic Matter/analysis , Lakes/analysis , Lakes/chemistry , Tibet , Water Movements , Rivers , Freezing , Mass Spectrometry , Hydrogen , Oxygen Isotopes , Volatilization
16.
Water Res ; 233: 119782, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36842330

ABSTRACT

The Eastern Route of the South-to-North Water Diversion Project (SNWDP-ER) is a large scale multi-decade infrastructure project aiming to divert substantial amounts of water (≈45 billion m3 yr-1) to alleviate water shortage in comparatively arid regions of northern China. The project has ramifications for hydrological connectivity and biogeochemical cycling of dissolved organic matter (DOM) in regional lakes affected by the project. We carried out an extensive field sampling campaign along the SNWDP-ER in different hydrological seasons of 2018 and monthly observations in Lake Hongze and Lake Luoma from April 2018 to June 2021. We found the lakes connecting to the SNWDP-ER had higher mean DOC, specific UV absorbance, higher ratio of humic-like to protein-like fluorophores (Humic : Protein), and shallower spectral slope (S275-295) in the wet season compared to the wet-to-dry transition, and dry seasons. The southern lakes and Yangtze River had lower DOC concentration, bioavailable DOC (BDOC), and higher DOM aromaticity compared to the northern two downstream lakes. Ultrahigh-resolution mass spectrometry (FT-ICR MS) revealed higher relative abundance of CHO-containing and aromatic compounds in the Yangtze River and the southern three upstream lakes compared to the northern two lakes. The data from Lake Hongze and Lake Luoma, studied in different hydrological seasons, suggest that water delivery had high consistency in DOM composition and BDOC over the season. We conclude that positioning along the watercourse and seasonally variable hydrological conditions play an important role in influencing the DOM composition and bioavailability of key lakes connecting to the SNWDP-ER. Our results indicated that the water diversion project delivers water with low DOC concentration and higher aromaticity and thus is of higher quality since it has higher DOM removal potential during drinking water treatment.


Subject(s)
Dissolved Organic Matter , Lakes , Lakes/chemistry , Biological Availability , Mass Spectrometry , China
17.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677835

ABSTRACT

The concentration of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been continually monitored since their toxicity became known, whereas nitro-PAHs (NPAHs) and oxy-PAHs (OPAHs), which are derivatives of PAHs by primary emissions or secondary formations in the atmosphere, have gained attention more recently. In this study, a method for the quantification of 18 NPAH and OPAH congeners in the atmosphere based on combined applications of gas chromatography coupled with chemical ionization mass spectrometry is presented. A high sensitivity and selectivity for the quantification of individual NPAH and OPAH congeners without sample preparations from the extract of aerosol samples were achieved using negative chemical ionization (NCI/MS) or positive chemical ionization tandem mass spectrometry (PCI-MS/MS). This analytical method was validated and applied to the aerosol samples collected from three regions in Northeast Asia-namely, Noto, Seoul, and Ulaanbaatar-from 15 December 2020 to 17 January 2021. The ranges of the method detection limits (MDLs) of the NPAHs and OPAHs for the analytical method were from 0.272 to 3.494 pg/m3 and 0.977 to 13.345 pg/m3, respectively. Among the three regions, Ulaanbaatar had the highest total mean concentration of NPAHs and OPAHs at 313.803 ± 176.349 ng/m3. The contribution of individual NPAHs and OPAHs in the total concentration differed according to the regional emission characteristics. As a result of the aerosol samples when the developed method was applied, the concentrations of NPAHs and OPAHs were quantified in the ranges of 0.016~3.659 ng/m3 and 0.002~201.704 ng/m3, respectively. It was concluded that the method could be utilized for the quantification of NPAHs and OPAHs over a wide concentration range.

18.
Environ Sci Technol ; 57(1): 761-769, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36516075

ABSTRACT

There are vast but uncharacterized microbial taxa and chemical metabolites (that is, dark matter) across the Earth's ecosystems. A lack of knowledge about dark matter hinders a complete understanding of microbial ecology and biogeochemical cycles. Here, we examine sediment bacteria and dissolved organic matter (DOM) in 300 microcosms along experimental global change gradients in subtropical and subarctic climate zones of China and Norway, respectively. We develop an indicator to quantify the importance of dark matter by comparing co-occurrence network patterns with and without dark matter in bacterial or DOM assemblages. In both climate zones, dark matter constitutes approximately 30-56% of bacterial taxa and DOM metabolites and changes connectivity within bacterial and DOM assemblages by between -15.5 and +61.8%. Dark matter is generally more important for changing network connectivity within DOM assemblages than those of microbes, especially in the subtropical zone. However, the importance of dark matter along global change gradients is strongly correlated between bacteria and DOM and consistently increased toward higher primary productivity because of increasing temperatures and nutrient enrichment. Our findings highlight the importance of microbial and chemical dark matter for changing biogeochemical interactions under global change.


Subject(s)
Dissolved Organic Matter , Ecosystem , Bacteria/metabolism , Climate , China
19.
Water Res ; 229: 119448, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36481705

ABSTRACT

Lakes are hotspots for global carbon cycling, yet few studies have explored how rainstorms alter the flux, composition, and bio-lability of dissolved organic matter (DOM) in inflowing rivers using high-frequency monitoring. We conducted extensive campaigns in the watershed of Lake Taihu and made daily observations for three years in its two largest inflowing tributaries, River Dapu and River Yincun. We found higher DOC, bio-labile DOC (BDOC), and specific UV absorbance (SUVA254) levels in the northwestern inflowing regions compared with the remaining lake regions. DOC and BDOC increased during rainstorms in River Dapu, and DOC declined due to local dilution and BDOC increased during rainstorms in River Yincun. We found that rainstorms resulted in increased DOM absorbance a350, SUVA254, and humification index (HIX) and enhanced percentages of humic-like fluorescent components, %polycyclic condensed aromatic and %polyphenolic compounds as revealed from ultrahigh-resolution mass spectrometry (FT-ICR MS), while spectral slope (S275-295) and the percentages of protein-like C1 and C3 declined during rainstorms compared with other seasons. This can be explained by a combined flushing of catchment soil organic matter and household effluents. The annual inflows of DOC and BDOC to Lake Taihu were 1.15 ± 0.18 × 104 t C yr-1 and 0.23 ± 0.06 × 104 t C yr-1 from River Dapu and 2.92 ± 0.42 × 103 t C yr-1 and 0.53 ± 0.07 × 103 t C yr-1 from River Yincun, respectively, and the fluxes of DOC and BDOC from both rivers increased during rainstorms. We found an elevated frequency of heavy rainfall and rainstorms in the lake watershed during the past six decades. We conclude that an elevated input of terrestrial organic-rich DOM with concurrent high aromaticity and high bio-lability from inflowing rivers is likely to occur in a future wetter climate.


Subject(s)
Lakes , Rivers , Lakes/chemistry , Rivers/chemistry , Seasons , Dissolved Organic Matter , Soil , China
20.
Sci Total Environ ; 859(Pt 2): 160369, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36414057

ABSTRACT

Regional air pollution is rising in Northeast Asia due to increasing energy consumption resulting from a growing population and intensifying industrialization. This study analyzes the sources of air pollution using fine particulate matter (PM2.5) sampling from the atmosphere over Korea and China. We then use this analysis to further investigate the relationship between organic compounds (source tracers) and the oxidative potential of PM2.5. The PM2.5 concentration during winter measured at a measurement stations in Korea showed no significant variation year-to-year. The PM2.5 concentrations measured during winter at a site near Beijing, China were 62.45 µg/m3 in 2018 and 33.07 µg/m3 in 2020. The sources, as determined from PMF, were analyzed at a site in Korea, the sources as secondary nitrate (34.10 %), secondary sulfate (20.20 %), coal combustion (4.01 %), vehicle emission (8.55 %), cooking and biomass burning (18.39 %), dust (8.45 %), and SOA (6.29 %) were identified. At a site in China, secondary nitrate (17.54 %), secondary sulfate (12.03 %), coal combustion (15.53 %), vehicle emission (12.43 %), cooking and biomass burning (9.25 %), dust (26.40 %), secondary organic aerosol (6.82 %) were identified. Our results show secondary organic carbon had a positive association with oxidative potential in Korea while primary organic carbon presented higher correlation with oxidative potential in China. Further, the ECMWF Reanalysis v5 (ERA5) wind field during the high PM2.5 events demonstrated airflow from the west coast of China resulting in high polar organic compounds at the Korean monitoring site. The results further support that aged PM2.5, which contains secondary products, leads to increased oxidative potential. The results presented explain the high concentrations of secondary products and the impact on the biological activities of PM2.5, supporting additional actions to address the impacts of long-range transport of PM2.5.


Subject(s)
Air Pollutants , Vehicle Emissions , Vehicle Emissions/analysis , Air Pollutants/analysis , Nitrates/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Aerosols/analysis , Dust/analysis , Seasons , Coal/analysis , Carbon/analysis , China , Sulfates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL