Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Neural Netw ; 180: 106664, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39217863

ABSTRACT

Complex-valued convolutional neural networks (CVCNNs) have been demonstrated effectiveness in classifying complex signals and synthetic aperture radar (SAR) images. However, due to the introduction of complex-valued parameters, CVCNNs tend to become redundant with heavy floating-point operations. Model sparsity is emerged as an efficient method of removing the redundancy without much loss of performance. Currently, there are few studies on the sparsity problem of CVCNNs. Therefore, a complex-valued soft-log threshold reweighting (CV-SLTR) algorithm is proposed for the design of sparse CVCNN to reduce the number of weight parameters and simplify the structure of CVCNN. On one hand, considering the difference between complex and real numbers, we redefine and derive the complex-valued log-sum threshold method. On the other hand, by considering the distinctive characteristics of complex-valued convolutional (CConv) layers and complex-valued fully connected (CFC) layers of CVCNNs, the complex-valued soft and log-sum threshold methods are respectively developed to prune the weights of different layers during the forward propagation, and the sparsity thresholds are optimized during the backward propagation by inducing a sparsity budget. Furthermore, different optimizers can be integrated with CV-SLTR. When stochastic gradient descent (SGD) is used, the convergence of CV-SLTR is proved if Lipschitzian continuity is satisfied. Experiments on the RadioML 2016.10A and S1SLC-CVDL datasets show that the proposed algorithm is efficient for the sparsity of CVCNNs. It is worth noting that the proposed algorithm has fast sparsity speed while maintaining high classification accuracy. These demonstrate the feasibility and potential of the CV-SLTR algorithm.

2.
Antioxidants (Basel) ; 13(8)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39199234

ABSTRACT

Excessive reactive oxygen species (ROS) may lead to oxidative damage and metabolic disorder. The pathogenesis of human bowel inflammation is closely related to oxidative damage of intestinal epithelial cells caused by ROS. This study aimed to explore the high-value utilization of the byproducts of sea cucumber in antioxidant food for colitis prevention. The technology of protease hydrolysis combined with Cordyceps militaris fermentation was used to obtain fermented sea cucumber viscera protease hydrolysates (FSVHs). The results revealed that FSVH could enhance antioxidant capacity and alleviate oxidative damage and apoptosis by activating the Nrf2/HO-1 pathway and triggering the self-protection immune mechanisms. Moreover, the FSVH supplementation could upregulate antioxidant-related metabolic pathways of Caco-2 cells such as glutathione metabolism, confirming the enhanced antioxidant capacity of damaged cells. In summary, FSVH could exert protective effects on Caco-2 cells in response to oxidative damage, providing a promising prospect for sea cucumber resource utilization and colitis prevention.

3.
Research (Wash D C) ; 7: 0433, 2024.
Article in English | MEDLINE | ID: mdl-39091635

ABSTRACT

Mitophagy maintains tissue homeostasis by self-eliminating defective mitochondria through autophagy. How mitophagy regulates stem cell activity during hair regeneration remains unclear. Here, we found that mitophagy promotes the proliferation of hair germ (HG) cells by regulating glutathione (GSH) metabolism. First, single-cell RNA sequencing, mitochondrial probe, transmission electron microscopy, and immunofluorescence staining showed stronger mitochondrial activity and increased mitophagy-related gene especially Prohibitin 2 (Phb2) expression at early-anagen HG compared to the telogen HG. Mitochondrial inner membrane receptor protein PHB2 binds to LC3 to initiate mitophagy. Second, molecular docking and functional studies revealed that PHB2-LC3 activates mitophagy to eliminate the damaged mitochondria in HG. RNA-seq, single-cell metabolism, immunofluorescence staining, and functional validation discovered that LC3 promotes GSH metabolism to supply energy for promoting HG proliferation. Third, transcriptomics analysis and immunofluorescence staining indicated that mitophagy was down-regulated in the aged compared to young-mouse HG. Activating mitophagy and GSH pathways through small-molecule administration can reactivate HG cell proliferation followed by hair regeneration in aged hair follicles. Our findings open up a new avenue for exploring autophagy that promotes hair regeneration and emphasizes the role of the self-elimination effect of mitophagy in controlling the proliferation of HG cells by regulating GSH metabolism.

4.
Cell Rep ; 43(7): 114513, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39003736

ABSTRACT

Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.


Subject(s)
Cell Proliferation , Dendritic Cells , Fibroblasts , Psoriasis , Psoriasis/pathology , Psoriasis/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Animals , Dendritic Cells/metabolism , Mice , Humans , Extracellular Matrix/metabolism , Galectins/metabolism , Mice, Inbred C57BL , Skin/pathology , Skin/metabolism
5.
Theranostics ; 14(8): 3339-3357, 2024.
Article in English | MEDLINE | ID: mdl-38855186

ABSTRACT

Rationale: Skin cells actively metabolize nutrients to ensure cell proliferation and differentiation. Psoriasis is an immune-disorder-related skin disease with hyperproliferation in epidermal keratinocytes and is increasingly recognized to be associated with metabolic disturbance. However, the metabolic adaptations and underlying mechanisms of epidermal hyperproliferation in psoriatic skin remain largely unknown. Here, we explored the role of metabolic competition in epidermal cell proliferation and differentiation in psoriatic skin. Methods: Bulk- and single-cell RNA-sequencing, spatial transcriptomics, and glucose uptake experiments were used to analyze the metabolic differences in epidermal cells in psoriasis. Functional validation in vivo and in vitro was done using imiquimod-like mouse models and inflammatory organoid models. Results: We observed the highly proliferative basal cells in psoriasis act as the winners of the metabolic competition to uptake glucose from suprabasal cells. Using single-cell metabolic analysis, we found that the "winner cells" promote OXPHOS pathway upregulation by COX7B and lead to increased ROS through glucose metabolism, thereby promoting the hyperproliferation of basal cells in psoriasis. Also, to prevent toxic damage from ROS, basal cells activate the glutathione metabolic pathway to increase their antioxidant capacity to assist in psoriasis progression. We further found that COX7B promotes psoriasis development by modulating the activity of the PPAR signaling pathway by bulk RNA-seq analysis. We also observed glucose starvation and high expression of SLC7A11 that causes suprabasal cell disulfide stress and affects the actin cytoskeleton, leading to immature differentiation of suprabasal cells in psoriatic skin. Conclusion: Our study demonstrates the essential role of cellular metabolic competition for skin tissue homeostasis.


Subject(s)
Cell Differentiation , Cell Proliferation , Glucose , Keratinocytes , Psoriasis , Psoriasis/metabolism , Psoriasis/pathology , Glucose/metabolism , Humans , Animals , Mice , Keratinocytes/metabolism , Disease Models, Animal , Single-Cell Analysis , Epidermal Cells/metabolism , Reactive Oxygen Species/metabolism , Energy Metabolism , Epidermis/metabolism , Epidermis/pathology , Imiquimod , Male
6.
Science ; 384(6698): 895-901, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781380

ABSTRACT

The covalent interaction of N-heterocyclic carbenes (NHCs) with transition metal atoms gives rise to distinctive frontier molecular orbitals (FMOs). These emergent electronic states have spurred the widespread adoption of NHC ligands in chemical catalysis and functional materials. Although formation of carbene-metal complexes in self-assembled monolayers on surfaces has been explored, design and electronic structure characterization of extended low-dimensional NHC-metal lattices remains elusive. Here we demonstrate a modular approach to engineering one-dimensional (1D) metal-organic chains and two-dimensional (2D) Kagome lattices using the FMOs of NHC-Au-NHC junctions to create low-dimensional molecular networks exhibiting intrinsic metallicity. Scanning tunneling spectroscopy and first-principles density functional theory reveal the contribution of C-Au-C π-bonding states to dispersive bands that imbue 1D- and 2D-NHC lattices with exceptionally small work functions.

7.
J Adv Res ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718895

ABSTRACT

INTRODUCTION: Tissues maintain their function through interaction with microenvironment. During aging, both hair follicles and blood vessels (BV) in skin undergo degenerative changes. However, it is elusive whether the changes are due to intrinsic aging changes in hair follicles or blood vessels respectively, or their interactions. OBJECTIVE: To explore how hair follicles and blood vessels interact to regulate angiogenesis and hair regeneration during aging. METHODS: Single-cell RNA-sequencing (scRNA-seq) analyses were used to identify the declined ability of dermal papilla (DP) and endothelial cells (ECs) during aging. CellChat and CellCall were performed to investigate interaction between DP and ECs. Single-cell metabolism (scMetabolism) analysis and iPATH were applied to analyze downstream metabolites in DP and ECs. Hair-plucking model and mouse cell organoid model were used for functional studies. RESULTS: During aging, distance and interaction between DP and ECs are decreased. DP interacts with ECs, with decreased EDN1-EDNRA signaling from ECs to DP and CTF1-IL6ST signaling from DP to ECs during aging. ECs-secreted EDN1 binds to DP-expressed EDNRA which enhances Taurine (TA) metabolism to promote hair regeneration. DP-emitted CTF1 binds to ECs-expressed IL6ST which activates alpha-linolenic acid (ALA) metabolism to promote angiogenesis. Activated EDN1-EDNRA-TA signaling promotes hair regeneration in aged mouse skin and in organoid cultures, and increased CTF1-IL6ST-ALA signaling also promotes angiogenesis in aged mouse skin and organoid cultures. CONCLUSIONS: Our finding reveals reciprocal interactions between ECs and DP. ECs releases EDN1 sensed by DP to activate TA metabolism which induces hair regeneration, while DP emits CTF1 signal received by ECs to enhance ALA metabolism which promotes angiogenesis. Our study provides new insights into mutualistic cellular crosstalk between hair follicles and blood vessels, and identifies novel signaling contributing to the interactions of hair follicles and blood vessels in normal and aged skin.

8.
J Environ Manage ; 359: 121013, 2024 May.
Article in English | MEDLINE | ID: mdl-38723495

ABSTRACT

Aquaculture pond sediments have a notable influence on the ecosystem balance and farmed animal health. In this study, microalgal-bacterial immobilization (MBI) was designed to improve aquaculture pond sediments via synergistic interactions. The physicochemical characteristics, bacterial communities, and the removal efficiencies of emerging pollutants were systematically investigated. The consortium containing diatom Navicula seminulum and Alcaligenes faecalis was cultivated and established in the free and immobilized forms for evaluating the treatment performance. The results indicated that the immobilized group exhibited superior performance in controlling nutrient pollutants, shaping and optimizing the bacterial community compositions with the enrichment of functional bacteria. Additionally, it showed a stronger positive correlation between the bacterial community shifts and nutrient pollutants removal compared to free cells. Furthermore, the immobilized system maintained the higher removal performance of emerging pollutants (heavy metals, antibiotics, and pathogenic Vibrios) than free group. These findings confirmed that the employment of immobilized N. seminulum and A. faecalis produced more synergistic benefits and exerted more improvements than free cells in ameliorating aquaculture pond sediments, suggesting the potential for engineering application of functional microalgal-bacterial consortium in aquaculture.


Subject(s)
Aquaculture , Microalgae , Ponds , Microalgae/metabolism , Geologic Sediments/microbiology , Metals, Heavy , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Animals
9.
J Am Chem Soc ; 146(23): 15879-15886, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38813680

ABSTRACT

The integration of low-energy states into bottom-up engineered graphene nanoribbons (GNRs) is a robust strategy for realizing materials with tailored electronic band structure for nanoelectronics. Low-energy zero-modes (ZMs) can be introduced into nanographenes (NGs) by creating an imbalance between the two sublattices of graphene. This phenomenon is exemplified by the family of [n]triangulenes (n ∈ N). Here, we demonstrate the synthesis of [3]triangulene-GNRs, a regioregular one-dimensional (1D) chain of [3]triangulenes linked by five-membered rings. Hybridization between ZMs on adjacent [3]triangulenes leads to the emergence of a narrow band gap, Eg,exp ∼ 0.7 eV, and topological end states that are experimentally verified using scanning tunneling spectroscopy. Tight-binding and first-principles density functional theory calculations within the local density approximation corroborate our experimental observations. Our synthetic design takes advantage of a selective on-surface head-to-tail coupling of monomer building blocks enabling the regioselective synthesis of [3]triangulene-GNRs. Detailed ab initio theory provides insights into the mechanism of on-surface radical polymerization, revealing the pivotal role of Au-C bond formation/breakage in driving selectivity.

10.
Comput Struct Biotechnol J ; 23: 1534-1546, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38633388

ABSTRACT

Glioblastoma (GBM) is one of the most malignant tumors of the central nervous system. The pattern of immune checkpoint expression in GBM remains largely unknown. We performed snRNA-Seq and spatial transcriptomic (ST) analyses on untreated GBM samples. 8 major cell types were found in both tumor and adjacent normal tissues, with variations in infiltration grade. Neoplastic cells_6 was identified in malignant cells with high expression of invasion and proliferator-related genes, and analyzed its interactions with microglia, MDM cells and T cells. Significant alterations in ligand-receptor interactions were observed, particularly between Neoplastic cells_6 and microglia, and found prominent expression of VISTA/VSIG3, suggesting a potential mechanism for evading immune system attacks. High expression of TIM-3, VISTA, PSGL-1 and VSIG-3 with similar expression patterns in GBM, may have potential as therapeutic targets. The prognostic value of VISTA expression was cross-validated in 180 glioma patients, and it was observed that patients with high VISTA expression had a poorer prognosis. In addition, multimodal cross analysis integrated SnRNA-seq and ST, revealing complex intracellular communication and mapping the GBM tumor microenvironment. This study reveals novel molecular characteristics of GBM, co-expression of immune checkpoints, and potential therapeutic targets, contributing to improving the understanding and treatment of GBM.

11.
Front Pharmacol ; 15: 1349139, 2024.
Article in English | MEDLINE | ID: mdl-38633614

ABSTRACT

Introduction: According to traditional Chinese veterinary medicine, endometritis is caused by a combination of Qi deficiency, blood stasis, and external evil invasion. Salvia miltiorrhiza is a traditional Chinese medicine that counteracts blood stasis and has additional demonstrated effects in boosting energy and restraining inflammation. Salvia miltiorrhiza has been employed in many traditional Chinese prescriptions that have proven effective in healing clinical dairy cow endometritis. Methods: the in vivo effect of Salvia miltiorrhiza in treating endometritis was evaluated in dairy cows. In addition, bovine endometrial epithelium cell inflammation and rat blood stasis models were employed to demonstrate the crosstalk between energy, blood circulation and inflammation. Network analysis, western blotting, qRT-PCR and ELISA were performed to investigate the molecular mechanism of Salvia miltiorrhiza in endometritis treatment. Results: The results demonstrate that treatment with Salvia miltiorrhiza relieves uterine inflammation, increases blood ATP concentrations, and prolongs blood clotting times. Four of the six Salvia miltiorrhiza main components (SMMCs) (tanshinone IIA, cryptotanshinone, salvianolic acid A and salvianolic acid B) were effective in reversing decreased ATP and increased IL-1ß, IL-6, and IL-8 levels in an in vitro endometritis model, indicating their abilities to ameliorate the negative energy balance and external evil invasion effects of endometritis. Furthermore, in a blood stasis rat model, inflammatory responses were induced in the absence of external infection; and all six SMMCs inhibited thrombin-induced platelet aggregation. Network analysis of SMMC targets predicted that Salvia miltiorrhiza may mediate anti-inflammation via the Toll-like receptor signaling pathway; anti-aggregation via the Platelet activation pathway; and energy balance via the Thermogenesis and AMPK signaling pathways. Multiple molecular targets within these pathways were verified to be inhibited by SMMCs, including P38/ERK-AP1, a key molecular signal that may mediate the crosstalk between inflammation, energy deficiency and blood stasis. Conclusion: These results provide mechanistic understanding of the therapeutic effect of Salvia miltiorrhiza for endometritis achieved through Qi deficiency, blood stasis, and external evil invasion.

12.
Nano Lett ; 24(17): 5387-5392, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629638

ABSTRACT

Topological phases in laterally confined low-dimensional nanographenes have emerged as versatile design tools that can imbue otherwise unremarkable materials with exotic band structures ranging from topological semiconductors and quantum dots to intrinsically metallic bands. The periodic boundary conditions that define the topology of a given lattice have thus far prevented the translation of this technology to the quasi-zero-dimensional (0D) domain of small molecular structures. Here, we describe the synthesis of a polycyclic aromatic hydrocarbon (PAH) featuring two localized zero modes (ZMs) formed by the topological junction interface between a trivial and nontrivial phase within a single molecule. First-principles density functional theory calculations predict a strong hybridization between adjacent ZMs that gives rise to an exceptionally small HOMO-LUMO gap. Scanning tunneling microscopy and spectroscopy corroborate the molecular structure of 9/7/9-double quantum dots and reveal an experimental quasiparticle gap of 0.16 eV, corresponding to a carbon-based small molecule long-wavelength infrared (LWIR) absorber.

13.
Sci Total Environ ; 929: 172600, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38653416

ABSTRACT

Fungi-microalgae consortium (FMC) has emerged as a promising system for advanced wastewater treatment due to its high biomass yield and environmental sustainability. This study aimed to investigate the nutrients removal, bacterial community shift, emerging contaminants elimination, and treatment mechanism of a FMC composed of Cordyceps militaris and Navicula seminulum for aquaculture pond water treatment. The fungi and microalgae were cultured and employed either alone or in combination to evaluate the treatment performance. The results demonstrated that the FMC could improve water quality more significantly by reducing nutrient pollutants and optimizing the bacterial community structures. Furthermore, it exhibited stronger positive correlation between the enrichment of functional bacteria for water quality improvement and pollutants removal performance than the single-species treatments. Moreover, the FMC outperformed other groups in eliminating emerging contaminants such as heavy metals, antibiotics, and pathogenic Vibrios. Superiorly, the FMC also showed excellent symbiotic interactions and cooperative mechanisms for pollutants removal. The results collectively corroborated the feasibility and sustainability of using C. militaris and N. seminulum for treating aquaculture water, and the FMC would produce more mutualistic benefits and synergistic effects than single-species treatments.


Subject(s)
Aquaculture , Microalgae , Waste Disposal, Fluid , Water Pollutants, Chemical , Aquaculture/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Wastewater/microbiology , Fungi , Water Purification/methods , Bacteria
14.
Cell Commun Signal ; 22(1): 195, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539203

ABSTRACT

BACKGROUND: Lung cancer is cancer with the highest morbidity and mortality in the world and poses a serious threat to human health. Therefore, discovering new treatments is urgently needed to improve lung cancer prognosis. Small molecule inhibitors targeting the ubiquitin-proteasome system have achieved great success, in which deubiquitinase inhibitors have broad clinical applications. The deubiquitylase OTUD3 was reported to promote lung tumorigenesis by stabilizing oncoprotein GRP78, implying that inhibition of OTUD3 may be a therapeutic strategy for lung cancer. RESULTS: In this study, we identified a small molecule inhibitor of OTUD3, Rolapitant, by computer-aided virtual screening and biological experimental verification from FDA-approved drugs library. Rolapitant inhibited the proliferation of lung cancer cells by inhibiting deubiquitinating activity of OTUD3. Quantitative proteomic profiling indicated that Rolapitant significantly upregulated the expression of death receptor 5 (DR5). Rolapitant also promoted lung cancer cell apoptosis through upregulating cell surface expression of DR5 and enhanced TRAIL-induced apoptosis. Mechanistically, Rolapitant directly targeted the OTUD3-GRP78 axis to trigger endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP)-DR5 signaling, sensitizing lung cancer cells to TRAIL-induced apoptosis. In the vivo assays, Rolapitant suppressed the growth of lung cancer xenografts in immunocompromised mice at suitable dosages without apparent toxicity. CONCLUSION: In summary, the present study identifies Rolapitant as a novel inhibitor of deubiquitinase OTUD3 and establishes that the OTUD3-GRP78 axis is a potential therapeutic target for lung cancer.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Lung Neoplasms , Spiro Compounds , Humans , Mice , Animals , Cell Line, Tumor , Lung Neoplasms/drug therapy , Proteomics , Ubiquitin-Specific Proteases/metabolism , Apoptosis , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology
15.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354227

ABSTRACT

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/physiology , Hepatocytes/metabolism , Gene Expression Profiling , Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
16.
J Med Chem ; 67(5): 3909-3934, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38377560

ABSTRACT

Targeting tumor stemness is an innovative approach to cancer treatment. Zinc Finger Protein 207 (ZNF207) is a promising target for weakening the stemness of glioma cells. Here, a series of novel N-(anthracen-9-ylmethyl) benzamide derivatives against ZNF207 were rationally designed and synthesized. The inhibitory activity was evaluated, and their structure-activity relationships were summarized. Among them, C16 exhibited the most potent inhibitory activity, as evidenced by its IC50 values ranging from 0.5-2.5 µM for inhibiting sphere formation and 0.5-15 µM for cytotoxicity. Furthermore, we found that C16 could hinder tumorigenesis and migration and promote apoptosis in vitro. These effects were attributed to the downregulation of stem-related genes. The in vivo evaluation demonstrated that C16 exhibited efficient permeability across the blood-brain barrier and potent efficacy in both subcutaneous and orthotopic glioma tumor models. Hence, C16 may serve as a potential lead compound targeting ZNF207 and has promising therapeutic potential for glioma.


Subject(s)
Antineoplastic Agents , Glioma , Humans , Glioma/drug therapy , Glioma/pathology , Structure-Activity Relationship , Apoptosis , Benzamides/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Microtubule-Associated Proteins
17.
Fish Shellfish Immunol ; 144: 109263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040134

ABSTRACT

Pattern recognition receptors (PRRs) are the first line of immune defense in invertebrates against pathogen infection; they recognize pathogens and transmit signals to downstream immune pathways. Among these, peptidoglycan recognition proteins (PGRPs) are an important family in invertebrates that generally comprise of complicated isoforms. A comprehensive understanding of PGRPs in evolutionarily and economically important marine invertebrates, such as the sea cucumber, Apostichopus japonicus, is crucial. Previous studies have identified two PGRPs in sea cucumber, AjPGRP-S and AjPGRP-S1, and another novel short-type PGRP, AjPGRP-S3, was additionally identified here. The full-length cDNA sequence of AjPGRP-S3 was obtained here by PCR-RACE, followed by which showed its gene expression analyses by in situ hybridization that showed it to be relatively highly expressed in coelomocytes and tube feet. Based on an analysis of the recombinant protein, rAjPGRP-S3, a board-spectrum pathogen recognition ability was noted that covered diverse Gram-negative and -positive bacteria, and fungi. Moreover, according to the results of yeast two-hybridization, it was suggested that rAJPGRP-S3 interacted with multiple immune-related factors, including proteins involved in the complement system, extracellular matrix, vesicle trafficking, and antioxidant system. These findings prove the important functions of AjPGRP-S3 in the transduction of pathogen signals to downstream immune effectors and help explore the functional differences in the AjPGRP isoforms.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Immunity, Innate/genetics , Polysaccharides/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
18.
Dev Cell ; 58(24): 2992-3008.e7, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38056451

ABSTRACT

The placenta becomes one of the most diversified organs during placental mammal radiation. The main in vitro model for studying mouse trophoblast development is the 2D differentiation model of trophoblast stem cells, which is highly skewed to certain lineages and thus hampers systematic screens. Here, we established culture conditions for the establishment, maintenance, and differentiation of murine trophoblast organoids. Murine trophoblast organoids under the maintenance condition contain stem cell-like populations, whereas differentiated organoids possess various trophoblasts resembling placental ones in vivo. Ablation of Nubpl or Gcm1 in trophoblast organoids recapitulated their deficiency phenotypes in vivo, suggesting that those organoids are valid in vitro models for trophoblast development. Importantly, we performed an efficient CRISPR-Cas9 screening in mouse trophoblast organoids using a focused sgRNA (single guide RNA) library targeting G protein-coupled receptors. Together, our results establish an organoid model to investigate mouse trophoblast development and a practicable approach to performing forward screening in trophoblast lineages.


Subject(s)
CRISPR-Cas Systems , Placenta , Pregnancy , Female , Mice , Animals , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Trophoblasts , Cell Differentiation , Organoids , Mammals
19.
ACS Appl Mater Interfaces ; 15(48): 55297-55307, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38058108

ABSTRACT

Functional interfaces and devices for rapid adsorption and immobilization of nucleic acids (NAs) are significant for relevant bioengineering applications. Herein, a microdevice with poly(acrylic acid) (PAA) photosensitive resin was integrated by three-dimensional (3D) printing, named DPAA for short. Precise microscale structures and abundant surface carboxyl functional groups were fabricated for fast and high-throughput deoxyribonucleic acid (DNA) separation. Surface modification was then done using polydopamine (PDA) and poly(ethylene glycol) (PEG) to obtain modified poly(acrylic acid) (PAA)-based devices DPDA-PAA and DPEG-PAA rich in amino and hydroxyl groups, respectively. The fabricated device DPAA possessed superior printing accuracy (40-50 µm). Functionalization of amino and hydroxyl was successful, and the modified devices DPDA-PAA and DPEG-PAA maintained a high thermal stability like DPAA. Surface potential analysis and molecular dynamics simulation indicated that the affinity for DNA was in the order of DPDA-PAA > DPEG-PAA > DPAA. Further DNA separation experiments confirmed the high throughput and high selectivity of DNA separation performance, consistent with the predicted affinity results. DPDA-PAA showed relatively the highest DNA extraction yield, while DPEG-PAA was the worst. An acidic binding system is more favorable for DNA separation and recovery. DPDA-PAA showed significantly better DNA extraction performance than DPAA in a weakly acidic environment (pH 5.0-7.0), and the average DNA yield of the first elution was 2.16 times that of DPAA. This work validates the possibility of modification on integrated 3D microdevices to improve their DNA separation efficiency effectively. It also provides a new direction for the rational design and functionalization of bioengineering separators based on nonmagnetic methods. It may pave a new path for the highly efficient polymerase chain reaction diagnosis.


Subject(s)
Nucleic Acids , Polyethylene Glycols , Polyethylene Glycols/chemistry , DNA
20.
NPJ Regen Med ; 8(1): 65, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996466

ABSTRACT

Tissue patterning is critical for the development and regeneration of organs. To advance the use of engineered reconstituted skin organs, we study cardinal features important for tissue patterning and hair regeneration. We find they spontaneously form spheroid configurations, with polarized epidermal cells coupled with dermal cells through a newly formed basement membrane. Functionally, the spheroid becomes competent morphogenetic units (CMU) that promote regeneration of tissue patterns. The emergence of new cell types and molecular interactions during CMU formation was analyzed using scRNA-sequencing. Surprisingly, in newborn skin explants, IFNr signaling can induce apical-basal polarity in epidermal cell aggregates. Dermal-Tgfb induces basement membrane formation. Meanwhile, VEGF signaling mediates dermal cell attachment to the epidermal cyst shell, thus forming a CMU. Adult mouse and human fetal scalp cells fail to form a CMU but can be restored by adding IFNr or VEGF to achieve hair regeneration. We find different multi-cellular configurations and molecular pathways are used to achieve morphogenetic competence in developing skin, wound-induced hair neogenesis, and reconstituted explant cultures. Thus, multiple paths can be used to achieve tissue patterning. These insights encourage more studies of "in vitro morphogenesis" which may provide novel strategies to enhance regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL