Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 645
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 79-84, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097892

ABSTRACT

The main objective of this work was to investigate the mechanism of Astragalus aqueous extract ulcer healing in diabetic foot model rats through the hypoxia-inducible factor 1-alpha (HIF-1ɑ)/vascular endothelial growth factor (VEGF) signalling pathway. Fifty specific-pathogen-free male Sprague Dawley rats were divided into blank (A), model control (B), Astragalus extract (C) and mupirocin (D) treatment groups. Group A received a regular diet, whereas the other groups received a high-fat/high-sugar diet and intraperitoneal streptozotocin injections to induce diabetes. Diabetic foot ulcers were created via skin excision. Subsequently, ulcers were debrided daily. Groups B, C and D received wet saline gauze, wet gauze with Astragalus extract and gauze with mupirocin, respectively, on the affected area. Group A received no treatment. After 14 days, the rats were assessed for ulcer healing and general condition. Immunohistochemistry was used to detect HIF-1ɑ and VEGF levels in the dorsalis pedis artery, and ELISA was used to determine serum IL-6 and CRP levels. The results revealed that Groups C and D had significantly faster ulcer healing compared with Group B (p < 0.01), and ulcer healing was faster in Group C than in Group D (p < 0.01). Group C exhibited notably higher HIF-1ɑ and VEGF protein expression levels compared with Groups B and D (p < 0.01). IL-6 and CRP expression levels in Groups C and D were significantly lower than those in Group B (p < 0.01). In summary, Astragalus aqueous extract effectively treats diabetic foot ulcers by up-regulating HIF-1ɑ and VEGF expression, activating the HIF-1ɑ/VEGF pathway, improving local tissue ischaemia and hypoxia, promoting collateral circulation and enhancing dorsalis pedis artery formation, thereby accelerating ulcer repair in diabetic rats.


Subject(s)
Astragalus Plant , Diabetic Foot , Hypoxia-Inducible Factor 1, alpha Subunit , Plant Extracts , Rats, Sprague-Dawley , Signal Transduction , Vascular Endothelial Growth Factor A , Wound Healing , Animals , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Male , Vascular Endothelial Growth Factor A/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Astragalus Plant/chemistry , Wound Healing/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Rats , Interleukin-6/metabolism , Interleukin-6/blood , C-Reactive Protein/metabolism
2.
Oncoimmunology ; 13(1): 2388304, 2024.
Article in English | MEDLINE | ID: mdl-39135889

ABSTRACT

The Hodgkin and Reed - Sternberg (HRS) cells in classical Hodgkin Lymphoma (cHL) actively modify the immune tumor microenvironment (TME) attracting immunosuppressive cells and expressing inhibitory molecules. A high frequency of myeloid cells in the TME is correlated with an unfavorable prognosis, but more specific and rare cell populations lack precise markers. Myeloid-derived suppressor cells (MDSCs) have been identified in the peripheral blood of cHL patients, where they appear to be correlated with disease aggressiveness. TNFRSF9 (CD137) is a T cell co-stimulator expressed by monocytic and dendritic cells. Its expression has also been described in HRS cells, where it is thought to play a role in reducing antitumor responses. Here, we perform qualitative and quantitative analyses of lymphocytic and MDSC subtypes and determine the CD137 cell distribution in cHL primary tumors using multiplex immunofluorescence and automated multispectral imaging. The results were correlated with patients' clinical features. Cells were stained with specific panels of immune checkpoint markers (PD-1, PD-L1, CD137), tumor-infiltrating T lymphocytes (CD3, PD-1), and monocytic cells/MDSCs (CD68, CD14, CD33, Arg-1, CD11b). This approach allowed us to identify distinct phenotypes and to analyze spatial interactions between immune subpopulations and tumor cells. The results confirm CD137 expression by T, monocytic and HRS cells. In addition, the expression of CD137, T exhausted cells, and monocytic MDSCs (m-MDSCs) in the vicinity of malignant HRS cells were associated with a worse prognosis. Our findings reveal new elements of the TME that mediate immune escape, and confirm CD137 as a candidate target for immunotherapy in cHL.


CD137-expressing immune cells and HRS cells are more abundant and in closer proximity in refractory patients than in responders.Monocytic myeloid-derived suppressor cells (m-MDSCs) are associated with unfavorable outcomes and relapse in cHL, unlike granulocytic MDSCs (g-MDSCs), which are located far from HRS cells in non-responders.The cHL tumor microenvironment promotes immune escape in refractory patients by holistically driving polarization and/or recruitment of several cell types with increased expression of CD137 and PD-L1 checkpoints.


Subject(s)
Hodgkin Disease , Myeloid-Derived Suppressor Cells , Reed-Sternberg Cells , Tumor Microenvironment , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Humans , Hodgkin Disease/pathology , Hodgkin Disease/immunology , Hodgkin Disease/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Tumor Microenvironment/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Female , Male , Adult , Middle Aged , Reed-Sternberg Cells/pathology , Reed-Sternberg Cells/metabolism , Aged , Spatial Analysis , Young Adult , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Adolescent , Prognosis , Biomarkers, Tumor/metabolism
3.
Plant Cell Rep ; 43(9): 214, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133328

ABSTRACT

KEY MESSAGE: We revealed the intrinsic transformation molecular mechanism of gastrodin by two ß-d-glucosidases (GeBGL1 and GeBGL9) during the processing of Gastrodia elata. Gastrodia elata is a plant resource with medicinal and edible functions, and its active ingredient is gastrodin. However, the intrinsic transformation molecular mechanism of gastrodin in G. elata has not been verified. We speculated that ß-d-glucosidase (BGL) may be the key enzymes hydrolyzing gastrodin. Here, we identified 11 GeBGL genes in the G. elata genome. These genes were unevenly distributed on seven chromosomes. These GeBGL proteins possessed motifs necessary for catalysis, namely, TF(I/M/L)N(T)E(Q)P and I(V/L)T(H/S)ENG(S). These GeBGLs were divided into five subgroups together with homologous genes from Arabidopsis thaliana, rice, and maize. Quantitative real-time PCR analysis showed GeBGL genes expression was tissue-specific. Gene cloning results showed two mutation sites in the GeBGL1 gene compared with the reference genome. And, the GeBGL4 gene has two indel fragments, which resulted in premature termination of translation and seemed to turn into a pseudogene. Furthermore, protein expression and enzyme activity results proved that GeBGL1 and GeBGL9 have the activity of hydrolyzing gastrodin into 4-hydroxybenzyl alcohol. This study revealed the function of ß-d-glucosidase in degrading active compounds during the G. elata processing for medicinal purposes. These results offer a theoretical foundation for elevating the standard and enhancing the quality of G. elata production.


Subject(s)
Benzyl Alcohols , Gastrodia , Gene Expression Regulation, Plant , Glucosides , Plant Proteins , Gastrodia/genetics , Gastrodia/metabolism , Benzyl Alcohols/metabolism , Glucosides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Phylogeny , Genome, Plant
4.
Clin Exp Med ; 24(1): 181, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105953

ABSTRACT

Traditional manual blood smear diagnosis methods are time-consuming and prone to errors, often relying heavily on the experience of clinical laboratory analysts for accuracy. As breakthroughs in key technologies such as neural networks and deep learning continue to drive digital transformation in the medical field, image recognition technology is increasingly being leveraged to enhance existing medical processes. In recent years, advancements in computer technology have led to improved efficiency in the identification of blood cells in blood smears through the use of image recognition technology. This paper provides a comprehensive summary of the methods and steps involved in utilizing image recognition algorithms for diagnosing diseases in blood smears, with a focus on malaria and leukemia. Furthermore, it offers a forward-looking research direction for the development of a comprehensive blood cell pathological detection system.


Subject(s)
Blood Cells , Image Processing, Computer-Assisted , Pathology, Clinical , Pathology, Clinical/methods , Pathology, Clinical/trends , Blood Cells/microbiology , Blood Cells/parasitology , Blood Cells/pathology , Malaria/diagnostic imaging , Leukemia/diagnostic imaging , Algorithms , Machine Learning , Blood Cell Count , Humans
5.
World J Psychiatry ; 14(6): 945-953, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38984347

ABSTRACT

BACKGROUND: The use of a problem-solving model guided by stimulus-organism-response (SOR) theory for women with postpartum depression after cesarean delivery may inform nursing interventions for women with postpartum depression. AIM: To explore the state of mind and coping style of women with depression after cesarean delivery guided by SOR theory. METHODS: Eighty postpartum depressed women with cesarean delivery admitted to the hospital between January 2022 and October 2023 were selected and divided into two groups of 40 cases each, according to the random number table method. In the control group, the observation group adopted the problem-solving nursing model under SOR theory. The two groups were consecutively intervened for 12 weeks, and the state of mind, coping styles, and degree of post-partum depression were analyzed at the end of the intervention. RESULTS: The Edinburgh Postnatal Depression Scale and Hamilton Depression Scale-24-item scores of the observation group were lower than in the control group after care, and the level of improvement in the state of mind was higher than that of the control group (P < 0.05). The level of coping with illness in the observation group after care (26.48 ± 3.35) was higher than that in the control group (21.73 ± 3.20), and the level of avoidance (12.04 ± 2.68) and submission (8.14 ± 1.15) was lower than that in the control group (15.75 ± 2.69 and 9.95 ± 1.20), with significant differences (P < 0.05). CONCLUSION: Adopting the problem-solving nursing model using SOR theory for postpartum depressed mothers after cesarean delivery reduced maternal depression, improved their state of mind, and coping level with illness.

6.
Eur J Pharmacol ; : 176859, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067563

ABSTRACT

OBJECTIVES: To explore the pathogenesis of Alzheimer's disease (AD), the potential targets and signaling pathways of ginsenoside Rg1 against AD were investigated by network pharmacology METHODS: Ginsenoside Rg1 targets were identified through PubChem, PharmMapper, and Uniprot databases, while the GeneCards database was used to examine the respective targets of amyloid precursor protein (APP) and AD. Then, the common targets between ginsenoside Rg1 and APP were explored by the Venny tool, the interaction network diagram between the active components and the targets was built via Cytoscape software, as well as GO enrichment and KEGG pathway annotation analysis were performed. Furthermore, genes associated with ferroptosis were found by the GeneCards and FerrDb databases. Besides, the connection among ginsenoside Rg1, APP, ferroptosis, and AD was predicted and analyzed. Finally, the effects of ginsenosides Rg1 and liproxstain-1 on the proliferation and differentiation of APP/PS1 mice were evaluated by immunohistochemistry RESULTS: Ginsenoside Rg1, APP, ferroptosis, and AD had 12 hub genes. GO enrichment and KEGG pathway annotation analysis showed that EGFR, SRC, protein hydrolysis, protein phosphorylation, the Relaxin pathway, and the FoxO signaling pathway play an important role in the potential mechanism of ginsenoside Rg1's under regulation of ferroptosis anti-AD through the modulation of APP-related signaling pathways. The APP/PS1 mice experiment verified that ginsenosides Rg1 and liproxstain-1 can promote the proliferation and differentiation CONCLUSION: Ginsenoside Rg1, APP and ferroptosis may act on EGFR, SRC, the Relaxin and FoxO signaling pathways to regulate protein metabolism, protein phosphorylation and other pathways to improve AD symptoms.

7.
NPJ Biofilms Microbiomes ; 10(1): 61, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060267

ABSTRACT

The gut microbiota has been demonstrated to play a significant role in the pathogenesis of Parkinson's disease (PD). However, conflicting findings regarding specific microbial species have been reported, possibly due to confounding factors within human populations. Herein, our current study investigated the interaction between the gut microbiota and host in a non-human primate (NHP) PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a multi-omic approach and a self-controlled design. Our transcriptomic sequencing of peripheral blood leukocytes (PBL) identified key genes involved in pro-inflammatory cytokine dysregulation, mitochondrial function regulation, neuroprotection activation, and neurogenesis associated with PD, such as IL1B, ATP1A3, and SLC5A3. The metabolomic profiles in serum and feces consistently exhibited significant alterations, particularly those closely associated with inflammation, mitochondrial dysfunctions and neurodegeneration in PD, such as TUDCA, ethylmalonic acid, and L-homophenylalanine. Furthermore, fecal metagenome analysis revealed gut dysbiosis associated with PD, characterized by a significant decrease in alpha diversity and altered commensals, particularly species such as Streptococcus, Butyrivibrio, and Clostridium. Additionally, significant correlations were observed between PD-associated microbes and metabolites, such as sphingomyelin and phospholipids. Importantly, PDPC significantly reduced in both PD monkey feces and serum, exhibiting strong correlation with PD-associated genes and microbes, such as SLC5A3 and Butyrivibrio species. Moreover, such multi-omic differential biomarkers were linked to the clinical rating scales of PD monkeys. Our findings provided novel insights into understanding the potential role of key metabolites in the host-microbiota interaction involved in PD pathogenesis.


Subject(s)
Feces , Gastrointestinal Microbiome , Macaca fascicularis , Animals , Feces/microbiology , Disease Models, Animal , Dysbiosis/microbiology , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Parkinsonian Disorders/microbiology , Parkinsonian Disorders/metabolism , Metabolomics/methods , Metabolome , Host Microbial Interactions , Multiomics
8.
Gut ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38969490

ABSTRACT

OBJECTIVE: Precancerous metaplasia transition to dysplasia poses a risk for subsequent intestinal-type gastric adenocarcinoma. However, the molecular basis underlying the transformation from metaplastic to cancerous cells remains poorly understood. DESIGN: An integrated analysis of genes associated with metaplasia, dysplasia was conducted, verified and characterised in the gastric tissues of patients by single-cell RNA sequencing and immunostaining. Multiple mouse models, including homozygous conditional knockout Klhl21-floxed mice, were generated to investigate the role of Klhl21 deletion in stemness, DNA damage and tumour formation. Mass-spectrometry-based proteomics and ribosome sequencing were used to elucidate the underlying molecular mechanisms. RESULTS: Kelch-like protein 21 (KLHL21) expression progressively decreased in metaplasia, dysplasia and cancer. Genetic deletion of Klhl21 enhances the rapid proliferation of Mist1+ cells and their descendant cells. Klhl21 loss during metaplasia facilitates the recruitment of damaged cells into the cell cycle via STAT3 signalling. Increased STAT3 activity was confirmed in cancer cells lacking KLHL21, boosting self-renewal and tumourigenicity. Mechanistically, the loss of KLHL21 promotes PIK3CB mRNA translation by stabilising the PABPC1-eIF4G complex, subsequently causing STAT3 activation. Pharmacological STAT3 inhibition by TTI-101 elicited anticancer effects, effectively impeding the transition from metaplasia to dysplasia. In patients with gastric cancer, low levels of KLHL21 had a shorter survival rate and a worse response to adjuvant chemotherapy. CONCLUSIONS: Our findings highlighted that KLHL21 loss triggers STAT3 reactivation through PABPC1-mediated PIK3CB translational activation, and targeting STAT3 can reverse preneoplastic metaplasia in KLHL21-deficient stomachs.

9.
J Neurochem ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022884

ABSTRACT

Vacuolar protein sorting 35 (VPS35), a critical component of the retromer complex, plays a pivotal role in the pathogenesis of neurodegenerative diseases (NDs). It is involved in protein transmembrane sorting, facilitating the transport from endosomes to the trans-Golgi network (TGN) and plasma membrane. Recent investigations have compellingly associated mutations in the VPS35 gene with neurodegenerative disorders such as Parkinson's and Alzheimer's disease. These genetic alterations are implicated in protein misfolding, disrupted autophagic processes, mitochondrial dysregulation, and synaptic impairment. Furthermore, VPS35 exerts a notable impact on neurogenesis by influencing neuronal functionality, protein conveyance, and synaptic performance. Dysregulation or mutation of VPS35 may escalate the progression of neurodegenerative conditions, underscoring its pivotal role in safeguarding neuronal integrity. This review comprehensively discusses the role of VPS35 and its functional impairments in NDs. Furthermore, we provide an overview of the impact of VPS35 on neurogenesis and further explore the intricate relationship between neurogenesis and NDs. These research advancements offer novel perspectives and valuable insights for identifying potential therapeutic targets in the treatment of NDs.

10.
Orphanet J Rare Dis ; 19(1): 247, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956624

ABSTRACT

BACKGROUND: The safety and efficacy of vaccination against coronavirus disease 2019 (COVID-19) in patients with lymphangioleiomyomatosis (LAM) is still unclear. This study investigates COVID-19 vaccine hesitancy, vaccine safety and efficacy, and COVID-19 symptoms in LAM patients. RESULTS: In total, 181 LAM patients and 143 healthy individuals responded to the questionnaire. The vaccination rate of LAM patients was 77.34%, and 15.7% of vaccinated LAM patients experienced adverse events. Vaccination decreased the risk of LAM patients developing anorexia [OR: 0.17, 95% CI: (0.07, 0.43)], myalgia [OR: 0.34, 95% CI: (0.13, 0.84)], and ageusia [OR: 0.34, 95% CI: (0.14, 0.84)]. In LAM patients, a use of mTOR inhibitors reduced the risk of developing symptoms during COVID-19, including fatigue [OR: 0.18, 95% CI: (0.03, 0.95)], anorexia [OR: 0.30, 95% CI: (0.09, 0.96)], and ageusia [OR: 0.20, 95% CI: (0.06, 0.67)]. CONCLUSIONS: Vaccination rates in the LAM population were lower than those in the general population, as 22.7% (41/181) of LAM patients had hesitations regarding the COVID-19 vaccine. However, the safety of COVID-19 vaccination in the LAM cohort was comparable to the healthy population, and COVID-19 vaccination decreased the incidence of COVID-19 symptoms in LAM patients. In addition, mTOR inhibitors seem not to determine a greater risk of complications in patients with LAM during COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Lymphangioleiomyomatosis , Humans , COVID-19/prevention & control , COVID-19/epidemiology , Female , Retrospective Studies , Adult , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Middle Aged , Male , SARS-CoV-2 , Vaccination , China/epidemiology , East Asian People
11.
Article in English | MEDLINE | ID: mdl-39019743

ABSTRACT

OBJECTIVES: This study was designed to determine the incidence, contributing factors, and prognostic implications of acute kidney injury (AKI) recovery patterns in patients who experienced AKI after valve replacement surgery (VRS). DESIGN: A retrospective cohort study was conducted. SETTING: The work took place in a postoperative care center in a single large-volume cardiovascular center. PARTICIPANTS: Patients undergoing VRS between January 2010 and December 2019 were enrolled. INTERVENTION: Patients were categorized into three groups based on their postoperative AKI status: non-AKI, AKI with early recovery (less than 48 hours), and persistent AKI. MEASUREMENT AND MAIN RESULTS: The primary outcome was in-hospital major adverse clinical events. The secondary outcomes included in-hospital and 1-year mortality. A total of 4,161 patients who developed AKI following VRS were included. Of these, 1,513 (36.4%) did not develop postoperative AKI, 1,875 (45.1%) experienced AKI with early recovery, and 773 (18.6%) had persistent AKI. Advanced age, diabetes, New York Heart Association III-IV heart failure, moderate-to-severe renal dysfunction, anemia, and AKI stages 2 and 3 were identified as independent risk factors for persistent AKI. In-hospital major adverse clinical events occurred in 59 (3.9%) patients without AKI, 88 (4.7%) with early AKI recovery, and 159 (20.6%) with persistent AKI (p < 0.001). Persistent AKI was independently associated with an increased risk of in-hospital adverse events and 1-year mortality. In contrast, AKI with early recovery did not pose additional risk compared with non-AKI patients. CONCLUSIONS: In patients who develop AKI following VRS, early AKI recovery does not pose additional risk compared with non-AKI. However, AKI lasting more than 48 hours is associated with an increased risk of in-hospital and long-term adverse outcomes.

12.
Expert Opin Ther Pat ; 34(9): 759-772, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38979973

ABSTRACT

INTRODUCTION: Phosphodiesterase 9 (PDE9) has been demonstrated as a potential target for neurological disorders and cardiovascular diseases, such as Alzheimer's disease and heart failure. For the last few years, a series of PDE9 inhibitors with structural diversities have been developed and patented by researchers and pharmaceutical companies, providing insights into first-in-class therapies of PDE9 drug candidates. AREA COVERED: This review provides an overview of PDE9 inhibitors in patents from 2018 to the present. EXPERT OPINION: Only a few of the current PDE9 inhibitors are highly selective over other PDEs, which limits their application in pharmacological and clinical research. The design and development of highly selective PDE9 inhibitors remain the top priority in future research. The advantages of targeting PDE9 rather than other PDEs in treating neurodegenerative diseases need to be explained thoroughly. Besides, application of PDE9 inhibitor-based combination therapies sheds light on treating diabetes and refractory heart diseases. Finally, PDE9 inhibitors should be further explored in clinical indications beyond neurological disorders and cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Drug Development , Patents as Topic , Phosphodiesterase Inhibitors , Humans , Animals , Phosphodiesterase Inhibitors/pharmacology , Cardiovascular Diseases/drug therapy , Drug Design , Nervous System Diseases/drug therapy , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology
13.
J Thorac Dis ; 16(6): 4016-4029, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983176

ABSTRACT

Background: Invasive fungal disease (IFD) has become a serious threat to human health in China and around the world, with high mortality and morbidity. Currently, the misdiagnosis rate of IFD is extremely high, compounded with the low quality of prescription antifungals and the high incidence of adverse events associated with IFD treatment, resulting in lengthy hospitalization, low clinical response, and high disease burden, which have become serious challenges in clinical practice. Antifungal stewardship (AFS) can not only significantly increase the early diagnosis rate of IFD, reduce inappropriate utilization of antifungal drugs, improve patient prognosis, but can also improve therapeutic safety and reduce healthcare expenses. Thus, it is urgent to identify key AFS metrics suitable for China's current situation. Methods: Based on metrics recommended by international AFS consensuses, combined with the current situation of China and the clinical experience of authoritative experts in various fields, several metrics were selected, and experts in the fields of respiratory diseases, hematology, intensive care units (ICUs), dermatology, infectious diseases, microbiology laboratory and pharmacy were invited to assess AFS metrics by the Delphi method. Consensus was considered to be reached with an agreement level of ≥80% for the metric. Results: Consensus was reached for 24 metrics, including right patient metrics (n=4), right time metrics (n=3), and right use metrics (n=17). Right use metrics were further subdivided into drug choice (n=8), drug dosage (n=4), drug de-escalation (n=1), drug duration (n=2), and drug consumption (n=2) metrics. Forty-six authoritative experts assessed and reviewed the above metrics, and a consensus was reached with a final agreement level of ≥80% for 22 metrics. Conclusions: This consensus is the first to propose a set of AFS metrics suitable for China, which helps to establish AFS standards in China and is also the first AFS consensus in Asia, and may improve the standard of clinical diagnosis and treatment of IFD, and guide hospitals to implement AFS, ultimately promoting the rational use of antifungal drugs and improving patient prognosis.

14.
Clin Transl Med ; 14(6): e1702, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861300

ABSTRACT

BACKGROUND: Patients with pulmonary hypertension (PH) and chronic obstructive pulmonary disease (COPD) have an increased risk of disease exacerbation and decreased survival. We aimed to develop and validate a non-invasive nomogram for predicting COPD associated with severe PH and a prognostic nomogram for patients with COPD and concurrent PH (COPD-PH). METHODS: This study included 535 patients with COPD-PH from six hospitals. A multivariate logistic regression analysis was used to analyse the risk factors for severe PH in patients with COPD and a multivariate Cox regression was used for the prognostic factors of COPD-PH. Performance was assessed using calibration, the area under the receiver operating characteristic curve and decision analysis curves. Kaplan-Meier curves were used for a survival analysis. The nomograms were developed as online network software. RESULTS: Tricuspid regurgitation velocity, right ventricular diameter, N-terminal pro-brain natriuretic peptide (NT-proBNP), the red blood cell count, New York Heart Association functional class and sex were non-invasive independent variables of severe PH in patients with COPD. These variables were used to construct a risk assessment nomogram with good discrimination. NT-proBNP, mean pulmonary arterial pressure, partial pressure of arterial oxygen, the platelet count and albumin were independent prognostic factors for COPD-PH and were used to create a predictive nomogram of overall survival rates. CONCLUSIONS: The proposed nomograms based on a large sample size of patients with COPD-PH could be used as non-invasive clinical tools to enhance the risk assessment of severe PH in patients with COPD and for the prognosis of COPD-PH. Additionally, the online network has the potential to provide artificial intelligence-assisted diagnosis and treatment. HIGHLIGHTS: A multicentre study with a large sample of chronic obstructive pulmonary disease (COPD) patients diagnosed with PH through right heart catheterisation. A non-invasive online clinical tool for assessing severe pulmonary hypertension (PH) in COPD. The first risk assessment tool was established for Chinese patients with COPD-PH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/mortality , Pulmonary Disease, Chronic Obstructive/physiopathology , Male , Female , Hypertension, Pulmonary/mortality , Hypertension, Pulmonary/complications , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Aged , Middle Aged , Nomograms , Prognosis , Risk Factors
15.
Inorg Chem ; 63(25): 11566-11571, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38848541

ABSTRACT

A pair of water-stable and highly porous homochiral fluorescent silver-organic framework enantiomers, namely, R-Ag-BPA-TPyPE (R-1) and S-Ag-BPA-TPyPE (S-1), had been prepared as enantioselective fluorescence sensors. Combining homochiral 1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BPA) with an AIE-based ligand tetrakis[4-(pyridin-4-yl)phenyl]ethene (TPyPE) in complexes R-1 and S-1 made them possess favorable circularly polarized luminescence (CPL) properties, and their CPL spectra were almost mirror images of each other. The luminescence dissymmetry factors (glum) are ±2.2 × 10-3 for R-1 and S-1, and the absolute fluorescence quantum yields (ΦFs) are 32.0% for R-1 and S-1, respectively. Complex R-1 could enantioselectively recognize two enantiomers of amino acids in water or DMF with high Stern-Volmer constants of 236-573 M-1 and enantioselectivity ratios of 1.40-1.78.

16.
Front Endocrinol (Lausanne) ; 15: 1327903, 2024.
Article in English | MEDLINE | ID: mdl-38846495

ABSTRACT

Objectives: To research the connection between the indexes of the indexes of triglyceride-glucose (TyG) combined with obesity indices and the initial neurological severity and short-term outcome of new-onset acute ischemic stroke. Methods: Data of patients with acute ischemic stroke admitted to the Stroke Ward of the Affiliated Hospital of Beihua University from November 2021 to October 2023, were collected. The two indexes were calculated by combining TyG and obesity indices: TyG-body mass index (TyG-BMI) and TyG-waist circumference (TyG-WC). The National Institute of Health Stroke Scale (NIHSS) was used to assess and group patients with neurological deficits within 24 hours of admission: mild stroke (NIHSS ≤5) and moderate-severe stroke (NIHSS >5). Short-term prognosis was evaluated using the modified Rankin Scale (mRS) at discharge or 14 days after onset of the disease and grouped: good outcome (mRS ≤2) and poor outcome (mRS >2). According to the quartiles of TyG-BMI and TyG-WC, the patients were placed into four groups: Q1, Q2, Q3 and Q4. Multi-factor logistic regression analysis was utilized to evaluate the correlation of TyG-BMI and TyG-WC with the severity and short-term outcome. Results: The study included 456 patients. After adjusting for multiple variables, the results showed that compared with the quartile 1, patients in quartile 4 of TyG-BMI had a reduced risk of moderate-severe stroke [Q4: OR: 0.407, 95%CI (0.185-0.894), P = 0.025]; Patients in quartiles 2, 3 and 4 of TyG-BMI had sequentially lower risk of short-term adverse outcomes [Q2: OR: 0.394, 95%CI (0.215-0.722), P = 0.003; Q3: OR: 0.324, 95%CI (0.163-0.642), P = 0.001; Q4: OR: 0.158, 95%CI (0.027-0.349), P <0.001]; Patients in quartiles 3 and 4 of TyG-WC had sequentially lower risk of moderate-severe stroke [Q3: OR: 0.355, 95%CI (0.173-0.728), P = 0.005; Q4: OR: 0.140, 95%CI (0.056-0.351), P <0.001]; Patients in quartiles 3 and 4 of TyG-WC had sequentially lower risk of short-term adverse outcomes [Q3: OR: 0.350, 95%CI (0.175-0.700), P = 0.003; Q4: OR: 0.178, 95%CI (0.071-0.451), P <0.001]. Conclusions: TyG-WC and TyG-BMI were correlated with the severity and short-term outcome of new-onset acute ischemic stroke. As TyG-WC and TyG-BMI increased, stroke severity decreased and short-term outcome was better.


Subject(s)
Blood Glucose , Body Mass Index , Ischemic Stroke , Severity of Illness Index , Triglycerides , Humans , Male , Female , Ischemic Stroke/blood , Middle Aged , Aged , Triglycerides/blood , Prognosis , Blood Glucose/analysis , Blood Glucose/metabolism , Waist Circumference , Obesity/blood , Obesity/complications
17.
BMC Plant Biol ; 24(1): 575, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890577

ABSTRACT

BACKGROUND: Salvia miltiorrhiza, a well-known traditional Chinese medicine, frequently suffers from replant diseases that adversely affect its quality and yield. To elucidate S. miltiorrhiza's metabolic adaptations to replant disease, we analyzed its metabolome and transcriptome, comparing normal and replant diseased plants for the first time. RESULTS: We identified 1,269 metabolites, 257 of which were differentially accumulated metabolites, and identified 217 differentially expressed genes. Integrated transcriptomic and metabolomic analyses revealed a significant up-regulation and co-expression of metabolites and genes associated with plant hormone signal transduction and flavonoid biosynthesis pathways in replant diseases. Within plant hormone signal transduction pathway, plants afflicted with replant disease markedly accumulated indole-3-acetic acid and abscisic acid, correlating with high expression of their biosynthesis-related genes (SmAmidase, SmALDH, SmNCED, and SmAAOX3). Simultaneously, changes in hormone concentrations activated plant hormone signal transduction pathways. Moreover, under replant disease, metabolites in the local flavonoid metabolite biosynthetic pathway were significantly accumulated, consistent with the up-regulated gene (SmHTC1 and SmHTC2). The qRT-PCR analysis largely aligned with the transcriptomic results, confirming the trends in gene expression. Moreover, we identified 10 transcription factors co-expressed with differentially accumulated metabolites. CONCLUSIONS: Overall, we revealed the key genes and metabolites of S. miltiorrhiza under replant disease, establishing a robust foundation for future inquiries into the molecular responses to combat replant stress.


Subject(s)
Gene Expression Profiling , Metabolic Networks and Pathways , Salvia miltiorrhiza , Transcriptome , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Metabolic Networks and Pathways/genetics , Metabolomics , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Metabolome , Signal Transduction/genetics , Flavonoids/metabolism
18.
Lab Anim Res ; 40(1): 24, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877529

ABSTRACT

BACKGROUND: Immune profiling has become an important tool for identifying predictive, prognostic and response biomarkers for immune checkpoint inhibitors from tumor microenvironment (TME). We aimed to build a multiplex immunofluorescence (mIF) panel to apply to formalin-fixed and paraffin-embedded tissues in mice tumors and to explore the programmed cell death protein 1/ programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. RESULTS: An automated eight-color mIF panel was evaluated to study the TME using seven antibodies, including cytokeratin 19, CD3e, CD8a, CD4, PD-1, PD-L1, F4-80 and DAPI, then was applied in six mice lung adenocarcinoma samples. Cell phenotypes were quantified by software to explore the co-localization and spatial distribution between immune cells within the TME. This mice panel was successfully optimized and applied to a small cohort of mice lung adenocarcinoma cases. Image analysis showed a sparse degree of immune cell expression pattern in this cohort. From the spatial analysis we found that T cells and macrophages expressing PD-L1 were close to the malignant cells and other immune cells. CONCLUSIONS: Comprehensive immune profiling using mIF in translational studies improves our ability to correlate the PD-1/PD-L1 axis and spatial distribution of lymphocytes and macrophages in mouse lung cancer cells to provide new cues for immunotherapy, that can be translated to human tumors for cancer intervention.

19.
Nature ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885696

ABSTRACT

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker-trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.

20.
Nat Plants ; 10(6): 984-993, 2024 06.
Article in English | MEDLINE | ID: mdl-38898165

ABSTRACT

Wheat blast, caused by the fungus Magnaporthe oryzae, threatens global cereal production since its emergence in Brazil in 1985 and recently spread to Bangladesh and Zambia. Here we demonstrate that the AVR-Rmg8 effector, common in wheat-infecting isolates, is recognized by the gene Pm4, previously shown to confer resistance to specific races of Blumeria graminis f. sp. tritici, the cause of powdery mildew of wheat. We show that Pm4 alleles differ in their recognition of different AVR-Rmg8 alleles, and some confer resistance only in seedling leaves but not spikes, making it important to select for those alleles that function in both tissues. This study has identified a gene recognizing an important virulence factor present in wheat blast isolates in Bangladesh and Zambia and represents an important first step towards developing durably resistant wheat cultivars for these regions.


Subject(s)
Ascomycota , Disease Resistance , Plant Diseases , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Ascomycota/physiology , Genes, Plant , Alleles , Plant Leaves/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL