Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.862
Filter
1.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093119

ABSTRACT

To improve the portability of magnets in gyrotron devices, we designed a compact Bitter-type magnet with power consumption optimization theory. This magnet operates at room temperature in a small volume. The theory revises existing electromagnetic theory for non-uniform structural Bitter-type magnets and achieves the lowest energy consumption through iterative optimization. To extend the magnetic field homogeneity region, the ferromagnetic material armature is applied to the Bitter-type system without additional power consumption. Unlike previous manual designs, the proposed Bitter-type magnets can obtain optimal parameters with a significant reduction in computing time. Through the introduction of correction factors, we improve accuracy through multiple verifications of simulations and experiments. On this basis, a room-temperature Bitter-type magnet system for Ka-band fundamental mode gyrotron amplifiers is designed. Its maximum magnetic field strength is 1.1 T, and the length of the homogeneity region is 300 mm. Through optimization, its energy consumption is only 27.5 kW.

2.
Adv Mater ; : e2403921, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101290

ABSTRACT

Radiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor-targeted "prosthetic-Arginine" coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O2) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO-donating Fmoc-protected Arginine and Ru3+ ions, creating HRRu nanozymes that merge NOS and CAT functionalities. Surface modification with human heavy chain ferritin (HFn) improves the targeting ability of nanozymes (HRRu-HFn) to tumor tissues. In the TME, strategic arginine incorporation within the nanozyme allows autonomous O2 and NO release, triggered by endogenous hydrogen peroxide, elevating NO and O2 levels to normalize vasculature and improve blood perfusion, thus mitigating hypoxia. Employing the intrinsic O2-transporting ability of heme, HRRu-HFn nanozymes also deliver O2 directly to the tumor site. Utilizing esophageal squamous cell carcinoma as a tumor model, the studies reveal that the synergistic functions of NO and O2 production, alongside targeted delivery, enable the HRRu-HFn nanozymes to combat tumor hypoxia and potentiate radiotherapy. This HRRu-HFn nanozyme based approach holds the potential to reduce the radiation dose required and minimize side effects associated with conventional radiotherapy.

3.
Phytomedicine ; 133: 155885, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39096544

ABSTRACT

BACKGROUND: Endothelial dysfunction (ED), characterized by markedly reduced nitric oxide (NO) bioavailability, vasoconstriction, and a shift toward a proinflammatory and prothrombotic state, is an important contributor to hypertension, atherosclerosis, and other cardiovascular diseases. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is widely involved in cardiovascular development. Przewaquinone A (PA), a lipophilic diterpene quinone extracted from Salvia przewalskii Maxim, inhibits vascular contraction. PURPOSE: Herein, the goal was to explore the protective effect of PA on ED in vivo and in vitro, as well as the underlying mechanisms. METHODS: A human umbilical vein endothelial cell (HUVEC) model of ED induced by angiotensin II (AngII) was used for in vitro observations. Levels of AMPK, endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO), and endothelin-1 (ET-1) were detected by western blotting and ELISA. A mouse model of hypertension was established by continuous infusion of AngII (1000 ng/kg/min) for 4 weeks using osmotic pumps. Following PA and/or valsartan administration, NO and ET-1 levels were measured. The levels of AMPK signaling-related proteins in the thoracic aorta were evaluated by immunohistochemistry. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were measured using the tail cuff method. Isolated aortic vascular tone measurements were used to evaluate the vasodilatory function in mice. Molecular docking, molecular dynamics, and surface plasmon resonance imaging (SPRi) were used to confirm AMPK and PA interactions. RESULTS: PA inhibited AngII-induced vasoconstriction and vascular adhesion as well as activated AMPK signaling in a dose-dependent manner. Moreover, PA markedly suppressed blood pressure, activated vasodilation in mice following AngII stimulation, and promoted the activation of AMPK signaling. Furthermore, molecular simulations and SPRi revealed that PA directly targeted AMPK. AMPK inhibition partly abolished the protective effects of PA against endothelial dysfunction. CONCLUSION: PA activates AMPK and ameliorates endothelial dysfunction during hypertension.

4.
Langmuir ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105727

ABSTRACT

Shape transformation of polymer particles is generally a nonequilibrium dynamics process. Controlling the shape transformation of polymers is increasingly attractive and challenging for scientists due to their extensive use in drug delivery and cancer therapy. Herein, we investigated the UV-triggered shape transformation pathway of polymeric vesicles assembled from Polystyrene-block-poly(4-vinylpyridine) and 4-hydroxyazobenzene (PS-b-P4VP(Azo-OH)) and the direct assembly pathway of UV-irradiated PS-b-P4VP(Azo-OH) homogeneous solution. In the shape transformation process, well-assembled vesicles can be transformed into toroid, cylindrical, rod-like, and spherical micelles. In the direct assembly pathway, rod-like and spherical micelles can be obtained. Interestingly, the toroid micelles can be obtained only from the UV-triggered shape transformation pathway. Contrasting the two pathways reveals the pathway dependence of PS-b-P4VP(Azo-OH) assembly, suggesting that the final assembly morphology is determined by the initial state and dynamic process. The speed of UV-triggered shape transformation and the final morphology of assemblies can be tuned easily by adjusting the UV illuminance, time, and content of Azo-OH addition. Moreover, the light-responsive polymeric vesicles can be used as drug carriers and have the potential to release drugs precisely.

5.
JCI Insight ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106105

ABSTRACT

Antigen presentation by Major Histocompatibility Complex Class I (MHC-I) is crucial for T-cell-mediated killing, and aberrant surface MHC-I expression is tightly associated with immune evasion. To address MHC-I downregulation, we conducted a high-throughput flow cytometry screen, identifying bleomycin (BLM) as a potent inducer of cell surface MHC-I expression. BLM-induced MHC-I augmentation renders tumor cells more susceptible to T cells in co-culture assays and enhances anti-tumor responses in an adoptive cellular transfer mouse model. Mechanistically, BLM remodels the tumor immune microenvironment, inducing MHC-I expression in an ATM/ATR-NF-κB-dependent manner. Furthermore, BLM improves T-cell-dependent immunotherapeutic approaches, including bispecific antibodies therapy, immune checkpoint therapy (ICT), and autologous tumor-infiltrating lymphocytes (TILs) therapy. Importantly, low-dose BLM treatment in mouse models amplified the anti-tumor effect of immunotherapy without detectable pulmonary toxicity. In summary, our findings repurpose BLM as a potential inducer of MHC-I, enhancing its expression to improve the efficacy of T-cell-based immunotherapy.

6.
Cell Host Microbe ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39106870

ABSTRACT

Identification of potential bacterial players in colorectal tumorigenesis has been a focus of intense research. Herein, we find that Clostridium symbiosum (C. symbiosum) is selectively enriched in tumor tissues of patients with colorectal cancer (CRC) and associated with higher colorectal adenoma recurrence after endoscopic polypectomy. The tumorigenic effect of C. symbiosum is observed in multiple murine models. Single-cell transcriptome profiling along with functional assays demonstrates that C. symbiosum promotes the proliferation of colonic stem cells and enhances cancer stemness. Mechanistically, C. symbiosum intensifies cellular cholesterol synthesis by producing branched-chain amino acids (BCAAs), which sequentially activates Sonic hedgehog signaling. Low dietary BCAA intake or blockade of cholesterol synthesis by statins could partially abrogate the C. symbiosum-induced cell proliferation in vivo and in vitro. Collectively, we reveal C. symbiosum as a bacterial driver of colorectal tumorigenesis, thus identifying a potential target in CRC prediction, prevention, and treatment.

7.
Am J Clin Pathol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110416

ABSTRACT

OBJECTIVES: To examine the associated risk of cervical intraepithelial neoplasm grade 3+ (CIN3+) lesions in patients with AGC and extensive human papillomavirus (HPV) genotyping. METHODS: Cases with atypical glandular cell (AGC) interpretation on a Papanicolaou (Pap) test were identified along with associated extensive HPV genotyping and histologic follow-up results. RESULTS: Within this cohort of 469,694 Pap tests, 0.4% were diagnosed as AGCs. In total, 1267 cases had concurrent high-risk HPV (hrHPV) genotyping, and 40.3% were hrHPV positive. The percentage of AGC cases with cervical CIN3+ on histologic follow-up was 52.2% when hrHPV was positive, whereas it was 4.9% with a negative hrHPV result. The top 5 hrHPV genotypes associated with cervical CIN3+ in this cohort were HPV16, HPV18, HPV58, HPV52, and HPV33. Indeed, 92.8% of the hrHPV-associated CIN3+ lesions identified in this cohort were positive for at least one of these HPV genotypes. The sensitivity of detecting cervical CIN3+ lesions was 85.6% with the top 5 hrHPV genotypes (HPV16/18/58/52/33) and only increased to 89.0% when the additional 12 genotypes were included. CONCLUSIONS: In patients with an AGC Pap, the risk of having a cervical CIN3+ lesion is greatly increased by positivity for hrHPV types 16, 18, 58, 52, and/or 33. Incorporating comprehensive HPV genotyping into AGC cytology allows for refined risk stratification and more tailored management strategies.

8.
iScience ; 27(8): 110431, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39108708

ABSTRACT

Both concurrent chemoradiotherapy (CCRT) and induction chemotherapy (ICT) followed by CCRT are standard care of advanced nasopharyngeal carcinoma (NPC). However, tailoring personalized treatment is lacking. Herein, we established a radiogenomic clinical decision support system to classify patients into three subgroups according to their predicted disease-free survival (DFS) with CCRT and ICT response. The CCRT-preferred group was suitable for CCRT since they achieved good survival with CCRT, which could not be improved by ICT. The ICT-preferred group was suitable for ICT plus CCRT since they had poor survival with CCRT; additional ICT could afford an improved DFS. The clinical trial-preferred group was suitable for clinical trials since they exhibited poor survival regardless of receiving CCRT or ICT plus CCRT. These findings suggest that our radiogenomic clinical decision support system could identify optimal candidates for CCRT, ICT plus CCRT, and clinical trials, and may thus aid in personalized management of advanced NPC.

9.
FASEB J ; 38(15): e23851, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39108204

ABSTRACT

Targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) with specific antibody offers long-term benefits for cancer immunotherapy but can cause severe adverse effects in the heart. This study aimed to investigate the role of anti-CTLA-4 antibody in pressure overload-induced cardiac remodeling and dysfunction. Transverse aortic constriction (TAC) was used to induce cardiac hypertrophy and heart failure in mice. Two weeks after the TAC treatment, mice received anti-CTLA-4 antibody injection twice a week at a dose of 10 mg/kg body weight. The administration of anti-CTLA-4 antibody exacerbated TAC-induced decline in cardiac function, intensifying myocardial hypertrophy and fibrosis. Further investigation revealed that anti-CTLA-4 antibody significantly elevated systemic inflammatory factors levels and facilitated the differentiation of T helper 17 (Th17) cells in the peripheral blood of TAC-treated mice. Importantly, anti-CTLA-4 mediated differentiation of Th17 cells and hypertrophic phenotype in TAC mice were dramatically alleviated by the inhibition of interleukin-17A (IL-17A) by an anti-IL-17A antibody. Furthermore, the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100, also reversed anti-CTLA-4-mediated cardiotoxicity in TAC mice. Overall, these results suggest that the administration of anti-CTLA-4 antibody exacerbates pressure overload-induced heart failure by activating and promoting the differentiation of Th17 cells. Targeting the CXCR4/Th17/IL-17A axis could be a potential therapeutic strategy for mitigating immune checkpoint inhibitors-induced cardiotoxicity.


Subject(s)
CTLA-4 Antigen , Heart Failure , Mice, Inbred C57BL , Th17 Cells , Animals , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/antagonists & inhibitors , Heart Failure/etiology , Heart Failure/metabolism , Male , Interleukin-17/metabolism , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Cell Differentiation , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/etiology
10.
World J Gastroenterol ; 30(28): 3403-3417, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39091717

ABSTRACT

BACKGROUND: There is currently a shortage of accurate, efficient, and precise predictive instruments for rectal neuroendocrine neoplasms (NENs). AIM: To develop a predictive model for individuals with rectal NENs (R-NENs) using data from a large cohort. METHODS: Data from patients with primary R-NENs were retrospectively collected from 17 large-scale referral medical centers in China. Random forest and Cox proportional hazard models were used to identify the risk factors for overall survival and progression-free survival, and two nomograms were constructed. RESULTS: A total of 1408 patients with R-NENs were included. Tumor grade, T stage, tumor size, age, and a prognostic nutritional index were important risk factors for prognosis. The GATIS score was calculated based on these five indicators. For overall survival prediction, the respective C-indexes in the training set were 0.915 (95% confidence interval: 0.866-0.964) for overall survival prediction and 0.908 (95% confidence interval: 0.872-0.944) for progression-free survival prediction. According to decision curve analysis, net benefit of the GATIS score was higher than that of a single factor. The time-dependent area under the receiver operating characteristic curve showed that the predictive power of the GATIS score was higher than that of the TNM stage and pathological grade at all time periods. CONCLUSION: The GATIS score had a good predictive effect on the prognosis of patients with R-NENs, with efficacy superior to that of the World Health Organization grade and TNM stage.


Subject(s)
Neoplasm Staging , Neuroendocrine Tumors , Nomograms , Rectal Neoplasms , Humans , Male , Female , Middle Aged , Rectal Neoplasms/mortality , Rectal Neoplasms/pathology , Rectal Neoplasms/therapy , Neuroendocrine Tumors/mortality , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/diagnosis , Retrospective Studies , China/epidemiology , Prognosis , Aged , Risk Factors , Adult , ROC Curve , Progression-Free Survival , Neoplasm Grading , Risk Assessment/methods , Proportional Hazards Models , Predictive Value of Tests , Nutrition Assessment , East Asian People
12.
EMBO Mol Med ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148004

ABSTRACT

Intravenous thrombolysis using recombinant tissue plasminogen activator (tPA) remains the primary treatment for patients with acute ischemic stroke (AIS). However, the mechanism of tPA-related hemorrhagic transformation (HT) remains poorly understood. Elevation of histidine-rich glycoprotein (HRG) expression was detected by nano-liquid chromatography tandem mass spectrometry at 1 h following tPA infusion as compared to baseline prior to tPA infusion (discovery cohort, n = 10), which was subsequently confirmed in a validation cohort (n = 157) by ELISA. Surprisingly, no elevation of HRG was detected in individuals who subsequently developed HT. During in vitro experiments, HRG reduced neutrophil NETosis, inflammatory cytokine production, and migration across the blood-brain barrier induced by tPA. In a photothrombotic murine AIS model, HRG administration ameliorated HT with delayed thrombolysis, by inhibiting neutrophil immune infiltration and downregulating pro-inflammatory signaling pathways. Neutrophil depletion or NETosis inhibition also alleviated HT, whereas HRG siRNA treatment exacerbated HT. In conclusion, fluctuations in HRG levels may reflect tPA therapy and its associated HT. The inhibitory effect of HRG on neutrophils may counteract tPA-induced immune abnormalities and HT in patients with AIS.

13.
Sci Rep ; 14(1): 18404, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117697

ABSTRACT

Urinary incontinence is a common complication in stroke survivors for whom new interventions are needed. This study investigated the therapeutic effect of low-frequency (LF) repeated transcranial magnetic stimulation (rTMS) on the contralesional primary motor cortex (M1) in patients with poststroke urinary incontinence (PSI). A total of 100 patients were randomly assigned to the rTMS group or sham-rTMS group on basis of the intervention they received. Both groups underwent five treatment sessions per week for 4 weeks. Data from the urodynamic examination were used as the primary outcome. The secondary outcome measures were questionnaires and pelvic floor surface electromyography. After 4 weeks of intervention, the maximum cystometric capacity (MCC), maximum detrusor pressure (Pdet.max), residual urine output, overactive bladder score (OABSS) (including frequency, urgency, and urgency urinary incontinence), and the ICIQ-UI SF improved significantly in the rTMS group compared with those in the sham-rTMS group (P < 0.05). However, no changes in pelvic floor muscle EMG were detected in patients with PSI (both P > 0.05). Our data confirmed that 4 weeks of LF-rTMS stimulation on the contralateral M1 positively affects poststroke urinary incontinence in several aspects, such as frequency, urgency urinary incontinence, MCC, end-filling Pdet, OABSS, and ICIQ-UI SF scores.


Subject(s)
Electromyography , Stroke , Transcranial Magnetic Stimulation , Urinary Bladder, Neurogenic , Humans , Transcranial Magnetic Stimulation/methods , Female , Male , Middle Aged , Stroke/complications , Stroke/therapy , Stroke/physiopathology , Aged , Urinary Bladder, Neurogenic/therapy , Urinary Bladder, Neurogenic/etiology , Urinary Bladder, Neurogenic/physiopathology , Treatment Outcome , Urinary Incontinence/therapy , Urinary Incontinence/etiology , Urinary Incontinence/physiopathology , Urodynamics , Pelvic Floor/physiopathology , Stroke Rehabilitation/methods , Motor Cortex/physiopathology
14.
Environ Sci Technol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116417

ABSTRACT

Endophytic fungus Serendipita indica can bolster plant growth and confer protection against various biotic and abiotic stresses. However, S. indica-reshaped rhizosphere microecology interactions and root-soil interface processes in situ at the submicrometer scale remain poorly understood. We combined amplicon sequencing and high-resolution nano X-ray fluorescence (nano-XRF) imaging of the root-soil interface to reveal cadmium (Cd) rhizosphere processes. S. indica can successfully colonize the roots of Sedum alfredii Hance, which induces a remarkable increase in shoot biomass by 211.32% and Cd accumulation by 235.72%. Nano-XRF images showed that S. indica colonization altered the Cd distribution in the rhizosphere and facilitated the proximity of more Cd and sulfur (S) to enter the roots and transport to the shoot. Furthermore, the rhizosphere-enriched microbiota demonstrated a more stable network structure after the S. indica inoculation. Keystone species were strongly associated with growth promotion and Cd absorption. For example, Comamonadaceae are closely related to the organic acid cycle and S bioavailability, which could facilitate Cd and S accumulation in plants. Meanwhile, Sphingomonadaceae could release auxin and boost plant biomass. In summary, we construct a mutualism system for beneficial fungi and hyperaccumulation plants, which facilitates high-efficient remediation of Cd-contaminated soils by restructuring the rhizosphere microbiota.

15.
Adv Sci (Weinh) ; : e2309752, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119903

ABSTRACT

The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury. A marked increase in macrophage infiltration at day 1 was followed by a second peak at day 14 post AKI. Spatiotemporal profiling revealed that injured tubules and macrophages co-localized early after AKI, whereas in late chronic stages had spatial proximity to fibroblasts. Further pseudotime analysis revealed two distinct lineages of macrophages in this transition: renal resident macrophages differentiated into the pro-repair subsets, whereas infiltrating monocyte-derived macrophages contributed to chronic inflammation and fibrosis. A novel macrophage subset, extracellular matrix remodeling-associated macrophages (EAMs) originating from monocytes, linked to renal fibrogenesis and communicated with fibroblasts via insulin-like growth factors (IGF) signalling. In sum, our study identified the spatiotemporal dynamics of macrophage heterogeneity with a unique subset of EAMs in AKI-to-CKD transition, which could be a potential therapeutic target for preventing CKD development.

16.
Oral Oncol ; 157: 106985, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126750

ABSTRACT

BACKGROUND: Immune-related characteristics can serve as reliable prognostic biomarkers in various cancers. Herein, we aimed to construct an individualized immune prognostic signature in nasopharyngeal carcinoma (NPC). METHODS: This study retrospectively included 455 NPC samples and 39 normal healthy nasopharyngeal tissue specimens. Samples from Gene Expression Omnibus (GEO) were obtained as discovery cohort to screen candidate prognostic immune-related gene pairs based on relative expression ordering of the genes. Quantitative real-time reverse transcription-PCR was used to detect the selected genes to construct an immune-related gene pair signature in training cohort, which comprised 118 clinical samples, and was then validated in validation cohort 1, comprising 92 clinical samples, and validation cohort 2, comprising 88 samples from GEO. RESULTS: We identified 26 immune-related gene pairs as prognostic candidates in discovery cohort. A prognostic immune signature comprising 11 immune gene pairs was constructed in training cohort. In validation cohort 1, the immune signature could significantly distinguish patients with high or low risk in terms of progression-free survival (PFS) (hazard ratio [HR] 2.66, 95 % confidence interval (CI) 1.17-6.02, P=0.015) and could serve as an independent prognostic factor for PFS in multivariate analysis (HR 2.66, 95 % CI 1.17-6.02, P=0.019). Similar results were obtained using validation cohort 2, in which PFS was significantly worse in high risk group than in low risk group (HR 3.02, 95 % CI 1.12-8.18, P=0.022). CONCLUSIONS: The constructed immune signature showed promise for estimating prognosis in NPC. It has potential for translation into clinical practice after prospective validation.

17.
Clin Chim Acta ; : 119907, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127297

ABSTRACT

BACKGROUND: Various biomarkers reportedly predict persistent acute kidney injury (AKI) despite their varying predictive performance across clinical trials. This study aims to compare the accuracy of various biomarkers in predicting persistent AKI in different populations and regions. METHODS: In this meta-analysis, we searched for urinary C-C motif chemokine ligand 14 (CCL14), Tissue inhibitor of metalloproteinase-2&insulin-like growth factor-binding protein-7 (TIMP-2&IGFBP7), Neutrophil Gelatinase-Associated Lipocalin (NGAL), plasma Cystatin C (pCysC), Soluble urokinase plasminogen activator receptor (suPAR), Proenkephalin (PenK) and urinary dickkopf-3:urinary creatinine (uDKK3:uCr) from various databases including Medline, PubMed, Embase, and Cochrane. This was geared towards predicting persistent AKI in adults (>18 years). Hierarchically summarized subject work characteristic curves (HSROC) and diagnostic odds ratio (DOR) values were used to summarize the diagnostic accuracy of the biomarkers. Further, meta-regression and subgroup analyses were carried out to identify sources of heterogeneity as well as evaluate the best predictive biomarkers in different populations and regions. RESULTS: We screened 31 studies from 2,356 studies and assessed the diagnostic value of 7 biomarkers for persistent AKI. Overall, CCL14 had the best diagnostic efficacy with an AUC of 0.79 (95% CI 0.75-0.82), whereas TIMP-2 & IGFBP7, NGAL, and pCysC had diagnostic efficacy of 0.75 (95% CI 0.71-0.79), 0.71 (95% CI 0.67-0.75), and 0.7007, respectively. Due to a limited number of studies, PenK, uDKK3:uCr, and suPAR were not subjected to meta-analysis; however, relevant literature reported diagnostic efficacy above 0.70. Subgroup analyses based on population, region, biomarker detection time, AKI onset time, and AKI duration revealed that in the intensive care unit (ICU) population, the AUC of CCL14 was 0.8070, the AUC of TIMP-2 & IGFBP7 was 0.726, the AUC of pCysC was 0.72, and the AUC of NGAL was 0.7344; in the sepsis population, the AUC of CCL14 was 0.85, the AUC of TIMP-2&IGFBP7 was 0.7438, and the AUC of NGAL was 0.544; in the post-operative population, the AUC of CCL14 was 0.83-0.93, the AUC of TIMP-2&IGFBP7 was 0.71, and the AUC of pCysC was 0.683. Regional differences were observed in biomarker prediction of persistent kidney injury, with AUCs of 0.8558 for CCL14, 0.7563 for TIMP-2 & IGFBP7, and 0.7116 for NGAL in the Eurasian American population. In the sub-African population, TIMP-2 & IGFBP7 had AUCs of 0.7945, 0.7418 for CCL14, 0.7097 for NGAL, and 0.7007 for pCysC. for TIMP-2 & IGFBP7 was 0.7945, AUC for CCL14 was 0.7418, AUC for NGAL was 0.7097, and AUC for pCysC was 0.7007 in the sub-African population. Duration of biomarker detection, AKI onset, and AKI did not influence the optimal predictive performance of CCL14. Subgroup analysis and meta-regression of CCL14-related studies revealed that CCL14 is the most appropriate biomarker for predicting persistent stage 2-3 AKI, with heterogeneity stemming from sample size and AKI staging. CONCLUSION: This meta-analysis discovered CCL14 as the best biomarker to predict persistent AKI, specifically persistent stage 2-3 AKI.

19.
Cell Death Differ ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39138375

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent stem cells that can exert immunomodulatory capacity upon stimulation with pro-inflammatory cytokines. Our previous work has identified Cullin 4B (CUL4B), a scaffold protein in the CUL4B-RING E3 ligase (CRL4B) complex, as a key regulator in the differentiation of MSCs. Here, we demonstrate the critical role of CUL4B in regulating the immunosuppressive function of MSCs. When stimulated with pro-inflammatory cytokines, MSCs lacking CUL4B display enhanced immunosuppressive capacity, which is mediated by the elevated inducible nitric oxide synthase (iNOS). TGF-ß signaling can suppress iNOS by inhibiting its transcription as well as promoting its protein degradation. We show that the CRL4B complex cooperates with PRC2 complex and HDACs to repress transcription of Dlx1 and Pmepa1, two inhibitors of TGF-ß signaling, leading to decreased expression and accelerated degradation of iNOS. Our study unveils the CRL4B complex as a potential therapeutic target in promoting the immunosuppressive capacity of MSCs.

20.
Front Microbiol ; 15: 1436770, 2024.
Article in English | MEDLINE | ID: mdl-39144210

ABSTRACT

Vibrio parahaemolyticus is a gram-negative halophilic bacterium widespread in temperate and tropical coastal waters; it is considered to be the most frequent cause of Vibrio-associated gastroenteritis in many countries. BolA-like proteins, which reportedly affect various growth and metabolic processes including flagellar synthesis in bacteria, are widely conserved from prokaryotes to eukaryotes. However, the effects exerted by BolA-like proteins on V. parahaemolyticus remain unclear, and thus require further investigation. In this study, our purpose was to investigate the role played by BolA-like protein (IbaG) in the pathogenicity of V. parahaemolyticus. We used homologous recombination to obtain the deletion strain ΔibaG and investigated the biological role of BolA family protein IbaG in V. parahaemolyticus. Our results showed that IbaG is a bacterial transcription factor that negatively modulates swimming capacity. Furthermore, overexpressing IbaG enhanced the capabilities of V. parahaemolyticus for swarming and biofilm formation. In addition, inactivation of ibaG in V. parahaemolyticus SH112 impaired its capacity for colonizing the heart, liver, spleen, and kidneys, and reduced visceral tissue damage, thereby leading to diminished virulence, compared with the wild-type strain. Finally, RNA-sequencing revealed 53 upregulated and 71 downregulated genes in the deletion strain ΔibaG. KEGG enrichment analysis showed that the two-component system, quorum sensing, bacterial secretion system, and numerous amino acid metabolism pathways had been altered due to the inactivation of ibaG. The results of this study indicated that IbaG exerts a considerable effect on gene regulation, motility, biofilm formation, and pathogenicity of V. parahaemolyticus. To the best of our knowledge, this is the first systematic study on the role played by IbaG in V. parahaemolyticus infections. Thus, our findings may lead to a better understanding of the metabolic processes involved in bacterial infections and provide a basis for the prevention and control of such infections.

SELECTION OF CITATIONS
SEARCH DETAIL