Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
2.
Angew Chem Int Ed Engl ; : e202407468, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847274

The creation of frustrated Lewis pairs on catalyst surface is an effective strategy for tuning CO2 activation. The critical step in the formation of frustrated Lewis pairs is the spatial effect of proximal Lewis acid-Lewis base pairs. Here, we demonstrate a facile surface functionalization methodology that enables hydrogen bonding between N and H atoms to mediate the construction of frustrated Lewis pairs in poly(heptazine imide), thereby increasing the propensity to activate CO2 molecules. Experimental and theoretical results show that the construction of active hydrogen bonding regions can facilitate the bending of CO2 molecules. Furthermore, the delocalization of electron clouds induced by the hydrogen bonding-mediated frustrated Lewis pairs can promote the heterolytic cleavage and photocatalytic conversion of CO2. This work highlights the potential of utilizing hydrogen bonding-mediated strategy in heterogeneously photocatalytic activation of CO2 over polymer materials.

3.
J Environ Manage ; 355: 120449, 2024 Mar.
Article En | MEDLINE | ID: mdl-38432012

N-acyl homoserine lactones (AHLs) function as signaling molecules influencing microbial community dynamics. This study investigates the impact of exogenously applied AHLs on methane production during waste-activated sludge (WAS) anaerobic digestion (AD). Nine AHL types, ranging from 10-4 to 10 µg/g VSS, were applied, comparing microbial community composition under optimal AHL concentrations. Firmicutes, Bacteroidetes, Chloroflexi, and Proteobacteria were identified in anaerobic digesters with C4-HSL, C6-HSL, and C8-HSL. Compared to the control, Halobacterota increased by 19.25%, 20.87%, and 9.33% with C7-HSL, C10-HSL, and C12-HSL. Exogenous C7-HSL enhanced the relative abundance of Methanosarcina, Romboutsia, Sedimentibacter, Proteiniclasticum, Christensenellaceae_R-7_group. C10-HSL increased Methanosarcina abundance. C4-HSL, C6-HSL, C8-HSL, C10-HSL, and C12-HSL showed potential to increase unclassified_Firmicutes. Functional Annotation of Prokaryotic Taxa (FAPROTAX) predicted AHLs' impact on related functional genes, providing insights into their role in AD methanogenesis regulation. This study aimed to enhance the understanding of the influence of different types of exogenous AHLs on AD and provide technical support for regulating the methanogenesis efficiency of AD by exogenous AHLs.


4-Butyrolactone , 4-Butyrolactone/analogs & derivatives , Acyl-Butyrolactones , Acyl-Butyrolactones/pharmacology , Anaerobiosis , 4-Butyrolactone/pharmacology , Sewage , Lactones
4.
Angew Chem Int Ed Engl ; 63(14): e202318236, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38323753

The controllable photocatalytic C-C coupling of methanol to produce ethylene glycol (EG) is a highly desirable but challenging objective for replacing the current energy-intensive thermocatalytic process. Here, we develop a metal-free porous boron nitride catalyst that demonstrates exceptional selectivity in the photocatalytic production of EG from methanol under mild conditions. Comprehensive experiments and calculations are conducted to thoroughly investigate the reaction mechanism, revealing that the OB3 unit in the porous BN plays a critical role in the preferential activation of C-H bond in methanol to form ⋅CH2OH via a concerted proton-electron transfer mechanism. More prominent energy barriers are observed for the further dehydrogenation of the ⋅CH2OH intermediate on the OB3 unit, inhibiting the formation of some other by-products during the catalytic process. Additionally, a small downhill energy barrier for the coupling of ⋅CH2OH in the OB3 unit promotes the selective generation of EG. This study provides valuable insights into the underlying mechanisms and can serve as a guide for the design and optimization of photocatalysts for efficient and selective EG production under mild conditions.

5.
Water Environ Res ; 96(2): e10994, 2024 Feb.
Article En | MEDLINE | ID: mdl-38351362

This study aimed to improve anaerobic digestion (AD) efficiency through the addition of zero-valent iron (ZVI) and biogas slurry. This paper demonstrated that methane production was most effectively promoted at a biogas slurry reflux ratio of 60%. The introduction of ZVI into anaerobic systems does not enhance its bioavailability. However, both biogas slurry reflux and the combination of ZVI with biogas slurry reflux increase the relative abundance of microorganisms involved in the direct interspecific electron transfer (DIET) process. Among them, the dominant microorganisms Methanosaeta, Methanobacterium, Methanobrevibacter, and Methanolinea accounted for over 60% of the total methanogenic archaea. The Tax4Fun function prediction results indicate that biogas slurry reflux and the combination of ZVI with biogas slurry reflux can increase the content of key enzymes in the acetotrophic and hydrotrophic methanogenesis pathways, thereby strengthening these pathways. The corrosion of ZVI promotes hydrogen production, and the biogas slurry reflux provided additional alkaline and anaerobic microorganisms for the anaerobic system. Their synergistic effect promoted the growth of hydrotrophic methanogens and improved the activities of various enzymes in the hydrolysis and acidification phases, enhanced the system's buffer capacity, and prevented secondary environmental pollution. PRACTITIONER POINTS: Optimal methane production was achieved at a biogas slurry reflux ratio of 60%. Biogas slurry reflux in anaerobic digestion substantially reduced discharge. ZVI addition in combination with biogas slurry reflux facilitates the DIET process.


Iron , Sewage , Anaerobiosis , Sewage/microbiology , Biofuels , Methane/metabolism , Bioreactors
6.
Nanomicro Lett ; 16(1): 64, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38175306

Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO2, Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C2+ compounds through C-C coupling process. Herein, the basic principles of photocatalytic CO2 reduction reactions (PCO2RR) and electrocatalytic CO2 reduction reaction (ECO2RR) and the pathways for the generation C2+ products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO2RR and ECO2RR is emphasized. Through a review of recent studies on PCO2RR and ECO2RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C2+ products. Finally, the opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO2 reduction processes in the future.

7.
Adv Mater ; 36(1): e2303287, 2024 Jan.
Article En | MEDLINE | ID: mdl-37973198

To alleviate the greenhouse effect and address the related energy crisis, solar-driven reduction of carbon dioxide (CO2 ) to value-added products is considered as a sustainable strategy. However, the insufficient separation and rapid recombination of photogenerated charge carriers during photocatalysis greatly limit their reduction efficiency and practical application potential. Here, isolated Cobalt (Co) atoms are successfully decorated into oxygen-doped boron nitride (BN) via an in situ pyrolysis method, achieving greatly improved catalytic activity and selectivity to the carbon monoxide (CO) product. X-ray absorption fine spectroscopy demonstrates that the isolated Co atoms are stabilized by the O and N atoms with an unsaturated CoO2 N1 configuration. Further experimental investigation and theoretical simulations confirm that the decorated Co atoms not only work as the real active center during the CO2 reduction process, but also perform as the electron pump to promote the electron/hole separation and transfer, resulting in greatly accelerated reaction kinetics and improved activity. In addition, the CoO2 N1 coordination geometry is favorable to the conversion from *CO2 to *COOH, which shall be considered as a selectivity-determining step for the evolution of the CO products. The surface modulation strategy at the atomic level opens a new avenue for regulating the reaction kinetics for photocatalytic CO2 reduction.

8.
Adv Mater ; 36(9): e2309199, 2024 Mar.
Article En | MEDLINE | ID: mdl-38011897

Although S-scheme artificial photosynthesis shows promise for photocatalytic hydrogen production, traditional methods often overly concentrate on a single reduction site. This limitation results in inadequate redox capability and inefficient charge separation, which hampers the efficiency of the photocatalytic hydrogen evolution reaction. To overcome this limitation, a double S-scheme system is proposed that leverages dual reduction sites, thereby preserving energetic photo-electrons and holes to enhance apparent quantum efficiency. The design features a double S-scheme junction consisting of CdS nanospheres decorated with anatase TiO2 nanoparticles coupled with graphitic C3 N4 . The as-prepared catalyst exhibits a hydrogen evolution rate of 26.84 mmol g-1  h-1 and an apparent quantum efficiency of 40.2% at 365 nm. This enhanced photocatalytic hydrogen evolution is ascribed to the efficient charge separation and transport induced by the double S-scheme. Both theoretical calculations and comprehensive spectroscopy tests (both in situ and ex situ) affirm the efficient charge transport across the catalyst interface. Moreover, substituting the reduction-type catalyst CdS with other similar sulfides like ZnIn2 S4 , ZnS, MoS2 and In2 S3 further confirms the feasibility of the proposed double S-scheme configuration. The findings provide a pathway to designing more effective double S-scheme artificial photosynthetic systems, opening up fresh perspectives in enhancing photocatalytic hydrogen evolution performance.

9.
Cell Res ; 33(8): 585-603, 2023 08.
Article En | MEDLINE | ID: mdl-37337030

Dissecting and understanding the cancer ecosystem, especially that around the tumor margins, which have strong implications for tumor cell infiltration and invasion, are essential for exploring the mechanisms of tumor metastasis and developing effective new treatments. Using a novel tumor border scanning and digitization model enabled by nanoscale resolution-SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq), we identified a 500 µm-wide zone centered around the tumor border in patients with liver cancer, referred to as "the invasive zone". We detected strong immunosuppression, metabolic reprogramming, and severely damaged hepatocytes in this zone. We also identified a subpopulation of damaged hepatocytes with increased expression of serum amyloid A1 and A2 (referred to collectively as SAAs) located close to the border on the paratumor side. Overexpression of CXCL6 in adjacent malignant cells could induce activation of the JAK-STAT3 pathway in nearby hepatocytes, which subsequently caused SAAs' overexpression in these hepatocytes. Furthermore, overexpression and secretion of SAAs by hepatocytes in the invasive zone could lead to the recruitment of macrophages and M2 polarization, further promoting local immunosuppression, potentially resulting in tumor progression. Clinical association analysis in additional five independent cohorts of patients with primary and secondary liver cancer (n = 423) showed that patients with overexpression of SAAs in the invasive zone had a worse prognosis. Further in vivo experiments using mouse liver tumor models in situ confirmed that the knockdown of genes encoding SAAs in hepatocytes decreased macrophage accumulation around the tumor border and delayed tumor growth. The identification and characterization of a novel invasive zone in human cancer patients not only add an important layer of understanding regarding the mechanisms of tumor invasion and metastasis, but may also pave the way for developing novel therapeutic strategies for advanced liver cancer and other solid tumors.


Ecosystem , Liver Neoplasms , Mice , Animals , Humans , Liver Neoplasms/pathology , Hepatocytes/metabolism , Immunosuppression Therapy , Cell Line, Tumor
10.
Adv Mater ; 35(6): e2209141, 2023 Feb.
Article En | MEDLINE | ID: mdl-36412928

Designing heterojunction photocatalysts imitating natural photosynthetic systems has been a promising approach for photocatalytic hydrogen generation. However, in the traditional Z-Scheme artificial photosynthetic systems, the poor charge separation, and rapid recombination of photogenerated carriers remain a huge bottleneck. To rationally design S-Scheme (i.e., Step scheme) heterojunctions by avoiding the futile charge transport routes is therefore seen as an attractive approach to achieving high hydrogen evolution rates. Herein, a twin S-scheme heterojunction is proposed involving graphitic C3 N4 nanosheets self-assembled with hydrogen-doped rutile TiO2 nanorods and anatase TiO2 nanoparticles. This catalyst shows an excellent photocatalytic hydrogen evolution rate of 62.37 mmol g-1 h-1 and high apparent quantum efficiency of 45.9% at 365 nm. The significant enhancement of photocatalytic performance is attributed to the efficient charge separation and transfer induced by the unique twin S-scheme structure. The charge transfer route in the twin S-scheme is confirmed by in situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spin-trapping tests. Femtosecond transient absorption (fs-TA) spectroscopy, transient-state surface photovoltage (TPV), and other ex situ characterizations further corroborate the efficient charge transport across the catalyst interface. This work offers a new perspective on constructing artificial photosynthetic systems with S-scheme heterojunctions to enhance photocatalytic performance.

11.
World J Gastroenterol ; 28(36): 5265-5279, 2022 Sep 28.
Article En | MEDLINE | ID: mdl-36185635

The intestinal mucosa is a highly compartmentalized structure that forms a direct barrier between the host intestine and the environment, and its dysfunction could result in a serious disease. As T cells, which are important components of the mucosal immune system, interact with gut microbiota and maintain intestinal homeostasis, they may be involved in the process of intestinal barrier dysfunction. P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effects of extracellular adenosine triphosphate and is expressed by most innate or adaptive immune cells, including T cells. Current evidence has demonstrated that P2X7R is involved in inflammation and mediates the survival and differentiation of T lymphocytes, indicating its potential role in the regulation of T cell function. In this review, we summarize the available research about the regulatory role and mechanism of P2X7R on the intestinal mucosa-derived T cells in the setting of intestinal barrier dysfunction.


Intestines , Receptors, Purinergic P2X7 , Adenosine Triphosphate , Humans , Inflammation , Intestinal Mucosa
12.
Kidney Med ; 4(9): 100524, 2022 Sep.
Article En | MEDLINE | ID: mdl-36061982
13.
J Cell Mol Med ; 26(10): 2831-2840, 2022 05.
Article En | MEDLINE | ID: mdl-35355403

Phosgene gas leakage can cause life-threatening acute lung injury (ALI), which is characterized by inflammation, increased vascular permeability, pulmonary oedema and oxidative stress. Although the downregulation of neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) is known to be associated with inflammation and oxidative damage, its functions in phosgene-induced ALI remain unclear. In this study, rats with phosgene-induced ALI were intravenously injected with NEDD4-overexpressing lentiviruses to determine the functions of NEDD4 in this inflammatory condition. NEDD4 expression was decreased in the lung parenchyma of phosgene-exposed control rats, whereas its expression level was high in the NEDD4-overexpressing rats. Phosgene exposure increased the wet-to-dry lung weight ratio, but NEDD4 abrogated this effect. NEDD4 overexpression attenuated phosgene-induced lung inflammation, lowering the high lung injury score (based on total protein, inflammatory cells and inflammatory factors in bronchoalveolar lavage fluid) and also reduced phosgene-induced oxidative stress and cell apoptosis. Finally, NEDD4 was found to interact with Notch1, enhancing its ubiquitination and thereby its degradation, thus attenuating the inflammatory responses to ALI. Therefore, we demonstrated that NEDD4 plays a protective role in alleviating phosgene-induced ALI, suggesting that enhancing the effect of NEDD4 may be a new approach for treating phosgene-induced ALI.


Acute Lung Injury , Nedd4 Ubiquitin Protein Ligases , Phosgene , Receptor, Notch1 , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Animals , Bronchoalveolar Lavage Fluid , Inflammation/metabolism , Lung/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Phosgene/toxicity , Rats , Rats, Sprague-Dawley , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
14.
ACS Nano ; 16(3): 4152-4161, 2022 Mar 22.
Article En | MEDLINE | ID: mdl-35170317

Single-atom catalysts have received widespread attention for their fascinating performance in terms of metal atom efficiency as well as their special catalysis mechanisms compared to conventional catalysts. Here, we prepared a high-performance catalyst of single-Cu-atom-decorated boron nitride nanofibers (BNNF-Cu) via a facile calcination method. The as-prepared catalyst shows high catalytic activity and good stability for converting different nitro compounds into their corresponding amines both with and without photoexcitation. By combined studies of synchrotron radiation analysis, high-resolution high-angle annular dark-field transmission electron microscopy studies, and DFT calculations, dispersion and coordination of Cu atoms as well as their catalytic mechanisms are explored. The BNNF-Cu catalyst is found to have a record high turnover frequency compared to previously reported non-precious-metal-based catalysts. While the performance of the BNNF-Cu catalyst is only of the middle range level among the state-of-the-art precious-metal-based catalysts, due to the much lower cost of the BNNF-Cu catalyst, its cost efficiency is the highest among these catalysts. This work provides a choice of support material that can promote the development of single-atom catalysts.

15.
J Colloid Interface Sci ; 608(Pt 1): 536-548, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-34626995

The development of a scalable strategy to prepare highly efficient and stable bifunctional electrocatalysts is the key to industrial electrocatalytic water splitting cycles to produce clean hydrogen. Here, a simple and quick one-step hydrothermal method was used to successfully fabricate a three-dimensional core chrysanthemum-like FeS/Ni3S2 heterogeneous nanoarray (FeS/Ni3S2@NF) on a porous nickel foam skeleton. Compared with the monomer Ni3S2@NF, the chrysanthemum-like FeS/ Ni3S2@NF heterostructure nanomaterials have improved catalytic performance in alkaline media, showing low overpotentials of 192 mV (η10) and 130 mV (η-10) for OER and HER, respectively. This study attests that integrated interface engineering and precise morphology control are effective strategies for activating the Ni3+/Ni2+ coupling, promoting charge transfer and improving the intrinsic activity of the material to accelerate the OER reaction kinetics and promote the overall water splitting performance. The scheme can be reasonably applied to the design and development of transition metal sulfide-based electrocatalysts to put into industrial practice of electrochemical water oxidation.

16.
Rev Assoc Med Bras (1992) ; 67(11): 1564-1569, 2021 Nov.
Article En | MEDLINE | ID: mdl-34909879

OBJECTIVE: The aim of this study was to analyze the effect of tirofiban on new cerebral microhemorrhage after mechanical thrombectomy in patients with acute ischemic stroke. METHODS: In total, 203 patients with acute ischemic stroke treated by mechanical thrombectomy in our department of neurology were enrolled as the research objects. The patients were divided into two groups: the patients who used tirofiban within 24 h after surgery were assigned to the study group (78 subjects), while patients who did not use tirofiban were assigned to the conventional group (125 subjects). Magnetic resonance imaging was used to detect new-onset cerebral microbleeds in patients with stroke after surgery. The National Institute of Health Stroke Scale, modified ranking scale, and activity of daily living scale were used to assess the prognosis of patients, and the general data and the occurrence of adverse effects between two groups were compared to comprehensively evaluate the efficacy and safety of tirofiban. RESULTS: The proportion of atrial fibrillation in the research group was significantly lower than that in the conventional group. The research group had a much lower rate of new-onset cerebral microbleeds than the conventional group (p<0.001). There was no significant difference in the proportion of adverse reactions between the two groups (p>0.05). CONCLUSION: The application of tirofiban in mechanical thrombectomy of patients with acute ischemic stroke has high safety, effectively reduces the occurrence of new cerebral microhemorrhage, and provides a guarantee for patient safety.


Brain Ischemia , Ischemic Stroke , Stroke , Brain Ischemia/drug therapy , Cerebral Hemorrhage/drug therapy , Fibrinolytic Agents/adverse effects , Humans , Stroke/drug therapy , Thrombectomy , Tirofiban , Treatment Outcome
17.
Front Pharmacol ; 12: 722283, 2021.
Article En | MEDLINE | ID: mdl-34483933

Intestinal barrier dysfunction is characterized by increased intestinal permeability to lumen endotoxin, showing remarkable predisposition to immune enteropathy, and colorectal cancer tumor necrosis factor (TNF)-α is associated with this pathological process, while the mechanism remains unknown. In this study, different doses of TNF-α were used for Caco-2 cell treatment. We discovered that miR-21-3p expression was obviously increased by TNF-α in a dose-dependent manner. Further study demonstrated that TNF-α could upregulate miR-21-3p expression through the NF-κB signaling pathway. Then, TargetScan and miRWalk miRNA-mRNA interaction prediction online tools were introduced, and metadherin (MTDH) was screened out as a potential target of miR-21-3p. We subsequently found that miR-21-3p could directly target the 3'-untranslated region (UTR) of MTDH mRNA and inhibit its expression. Furthermore, it was demonstrated that miR-21-3p could regulate the Wnt signaling pathway by targeting MTDH mRNA, suggesting the effect of miR-21-3p/MTDH/Wnt axis on intestinal barrier dysfunction. Our findings provide a novel potential biomarker and therapeutic target for intestinal barrier dysfunction and related diseases.

18.
J Inflamm Res ; 14: 4817-4825, 2021.
Article En | MEDLINE | ID: mdl-34584440

BACKGROUND: Intestinal ischemia-reperfusion (II/R) injury is a common clinical complication associated with high mortality, for which microRNA (miRNA) drives potentially its pathophysiological progression. MiRNAs regulate different messenger RNAs (mRNAs). However, the regulatory network between miRNAs and mRNAs in intestinal ischemia-reperfusion injury is elusive. METHODS: We analyzed the different expression of mRNAs and miRNAs in intestinal tissues from patients from three groups (arterial group (group A), venous group (group V), control group (group C)). Common differentially expressed (Co-DE) miRNAs and differentially expressed mRNAs were acquired via concerned analyses among the three groups. Co-DE mRNAs were shared parts of target mRNAs and differentially expression mRNAs. Cytoscape was employed to construct the regulatory network between miRNAs and mRNAs. Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway depicted the functions and potential pathway associated with Co-DE mRNAs. Using the STRING and Cytoscape, we found critical mRNAs in the protein-protein interaction (PPI) network. RESULTS: The miRNA-mRNA network comprised 8 Co-DE miRNAs and 140 Co-DE mRNAs. Of note, 140 Co-DE mRNAs were targets of these 8 miRNAs, and their roles were established through the functional exploration via GO analysis and KEGG analysis. PPI network and Cytoscape revealed COL1A2, THY1, IL10, MMP2, SERPINH1, COL3A1, COL14A1, and P4HA1 as the top 8 key mRNAs. CONCLUSION: This study has demonstrated a miRNA-mRNA regulatory network in intestinal ischemia-reperfusion injury, and explored the key mRNAs and their potential functions. These findings could provide new insight into prognostic markers and therapeutic targets for patients with intestinal ischemia-reperfusion injury in clinical practice.

19.
J Biochem Mol Toxicol ; 35(9): e22851, 2021 Sep.
Article En | MEDLINE | ID: mdl-34331784

Phosgene may induce acute lung injury (ALI) when a person is exposed to it. Mesenchymal stem cells (MSCs) were affirmed to have therapeutic effects on phosgene-induced ALI. In a previous study, ALI exosomes have been confirmed to promote the proliferation and migration of MSCs. However, the mechanism of this phenomenon is still unclear. MicroRNAs (miRNAs) are essential in the physiological process of cells. In this study, lung-derived exosomes were isolated from phosgene-exposed and normal rats, respectively, through ultracentrifugation and cultured MSCs with these exosomes. We found that rno-miR-34c-3p was downregulated in MSCs cocultured with ALI exosomes. MiR-34c-3p inhibitor promoted the proliferation and migration of MSCs. Moreover, the dual-luciferase reporter assay demonstrated that miR-34c-3p regulated Janus kinase 1 (JAK1) expression. The miR-34c-3p inhibitor also significantly activated the JAK1/signal transducer and activator of transcription 3 (STAT3) signaling pathway. In conclusion, ALI exosomes decrease the miR-34c-3p expression levels, influencing MSCs via the JAK1/STAT3 signaling pathway.


Exosomes/metabolism , Lung Injury/metabolism , Lung/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Phosgene/toxicity , Animals , Coculture Techniques , Exosomes/pathology , Lung/pathology , Lung Injury/chemically induced , Lung Injury/pathology , Male , Mesenchymal Stem Cells/pathology , Rats , Rats, Sprague-Dawley
20.
Biomed Res Int ; 2021: 6278526, 2021.
Article En | MEDLINE | ID: mdl-33506021

Phosgene exposure can cause acute lung injury (ALI), for which there is no currently available effective treatment. Mesenchymal stem cells (MSCs) which have been proven to have therapeutic potential and be helpful in the treatment of various diseases, but the mechanisms underlying the function of MSCs against phosgene-induced ALI are still poorly explored. In this study, we compared the expression profiles of mRNAs, lncRNAs, and circRNAs in the lung tissues from rats of three groups-air control (group A), phosgene-exposed (group B), and phosgene + MSCs (group C). The results showed that 389 mRNAs, 198 lncRNAs, and 56 circRNAs were differently expressed between groups A and B; 130 mRNAs, 107 lncRNAs, and 35 circRNAs between groups A and C; and 41 mRNAs, 88 lncRNAs, and 18 circRNAs between groups B and C. GO and KEGG analyses indicated that the differentially expressed RNAs were mainly involved in signal transduction, immune system processes, and cancers. In addition, we used a database to predict target microRNAs (miRNAs) interacting with circRNAs and the R network software package to construct a circRNA-targeted miRNA gene network map. Our study showed new insights into changes in the RNA expression in ALI, contributing to explore the mechanisms underlying the therapeutic potential of MSCs in phosgene-induced ALI.


Acute Lung Injury , Lung , Phosgene/adverse effects , Transcriptome , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Animals , Disease Models, Animal , Lung/chemistry , Lung/drug effects , Lung/metabolism , Mesenchymal Stem Cells/physiology , RNA/analysis , RNA/genetics , RNA/metabolism , Rats , Transcriptome/drug effects , Transcriptome/genetics
...