Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976579

ABSTRACT

Formation of the apical hook in etiolated dicot seedlings results from differential growth in the hypocotyl apex and is tightly controlled by environmental cues and hormones, among which auxin and gibberellins (GAs) play an important role. Cell expansion is tightly regulated by the cell wall, but whether and how feedback from this structure contributes to hook development is still unclear. Here, we show that etiolated seedlings of the Arabidopsis (Arabidopsis thaliana) quasimodo2-1 (qua2) mutant, defective in pectin biosynthesis, display severe defects in apical hook formation and maintenance, accompanied by loss of asymmetric auxin maxima and of differential cell expansion. Moreover, qua2 seedlings show reduced expression of HOOKLESS 1 (HLS1) and PHYTOCHROME INTERACTING FACTOR 4 (PIF4), which are positive regulators of hook formation. Treatment of wild-type seedlings with the cellulose inhibitor isoxaben (isx) also prevents hook development and represses HLS1 and PIF4 expression. Exogenous GAs, loss of DELLA proteins or HLS1 overexpression partially restore hook development in qua2 and isx-treated seedlings. Interestingly, increased agar concentration in the medium restores, both in qua2 and isx-treated seedlings, hook formation, asymmetric auxin maxima and PIF4 and HLS1 expression. Analysis of plants expressing a FRET-based GA sensor indicate that isx reduces accumulation of GAs in the apical hook region in a turgor-dependent manner. Lack of the cell wall integrity sensor THESEUS 1, which modulates turgor loss point, restores hook formation in qua2 and isx-treated seedlings. We propose that turgor-dependent signals link changes in cell wall integrity to the PIF4-HLS1 signalling module to control differential cell elongation during hook formation.

2.
Int J Surg Oncol ; 2024: 5339292, 2024.
Article in English | MEDLINE | ID: mdl-38966634

ABSTRACT

Objective: Determine the histopathologic features that correlate with head and neck cancer (HNC) cachexia. Methods: A single-institution, retrospective study was performed on adults with HPV-negative, mucosal squamous cell carcinoma of the aerodigestive tract undergoing resection and free flap reconstruction from 2014 to 2019. Patients with distant metastases were excluded. Demographics, comorbidities, preoperative nutrition, and surgical pathology reports were collected. Comparisons of histopathologic features and cachexia severity were made. Results: The study included 222 predominantly male (64.9%) patients aged 61.3 ± 11.8 years. Cachexia was identified in 57.2% patients, and 18.5% were severe (≥15% weight loss). No differences in demographics were identified between the groups. Compared to control, patients with severe cachexia had lower serum hemoglobin (p=0.048) and albumin (p < 0.001), larger tumor diameter (p < 0.001), greater depth of invasion (p < 0.001), and elevated proportions of pT4 disease (p < 0.001), pN2-N3 disease (p=0.001), lymphovascular invasion (p=0.009), and extranodal extension (p=0.014). Multivariate logistic regression identified tumor size (OR [95% CI] = 1.36 [1.08-1.73]), oral cavity tumor (OR [95% CI] = 0.30 [0.11-0.84]), and nodal burden (OR [95% CI] = 1.16 [0.98-1.38]) as significant histopathologic contributors of cancer cachexia. Conclusions: Larger, more invasive tumors with nodal metastases and aggressive histologic features are associated with greater cachexia severity in mucosal HNC.


Subject(s)
Cachexia , Head and Neck Neoplasms , Humans , Cachexia/pathology , Cachexia/etiology , Male , Middle Aged , Female , Retrospective Studies , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/surgery , Head and Neck Neoplasms/complications , Aged , Squamous Cell Carcinoma of Head and Neck/surgery , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/complications , Prognosis , Neoplasm Invasiveness , Free Tissue Flaps
3.
Gait Posture ; 113: 246-251, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38964048

ABSTRACT

BACKGROUND: No in-shoe systems, measuring both components of plantar load (plantar pressure and shear stress) are available for use in patients with diabetes. The STAMPS (STrain Analysis and Mapping of the Plantar Surface) system utilises digital image correlation (DIC) to determine the strain sustained by a deformable insole, providing a more complete understanding of plantar shear load at the foot-surface interface. RESEARCH QUESTIONS: What is the normal range and pattern of strain at the foot-surface interface within a healthy population as measured by the STAMPS system? Is STAMPS a valid tool to measure the effects of plantar load? METHODS: A cross-sectional study of healthy participants was undertaken. Healthy adults without foot pathology or diabetes were included. Participants walked 20 steps with the STAMPS insole in a standardised shoe. Participants also walked 10 m with the Novel Pedar® plantar pressure measurement insole within the standardised shoe. Both measurements were repeated three times. Outcomes of interest were global and regional values for peak resultant strain (SMAG) and peak plantar pressure (PPP). RESULTS: In 18 participants, median peak SMAG and PPP were 35.01 % and 410.6kPa respectively. The regions of the hallux and heel sustained the highest SMAG (29.31 % (IQR 24.56-31.39) and 20.50 % (IQR 15.59-24.12) respectively) and PPP (344.8kPa (IQR 268.3 - 452.5) and 279.3kPa (IQR 231.3-302.1) respectively). SMAG was moderately correlated with PPP (r= 0.65, p < 0.001). Peak SMAG was located at the hallux in 55.6 % of participants, at the 1st metatarsal head (MTH) in 16.7 %, the heel in 16.7 %, toes 3-5 in 11.1 % and the MTH2 in 5.6 %. SIGNIFICANCE: The results demonstrate the STAMPS system is a valid tool to measure plantar strain. Further studies are required to investigate the effects of elevated strain and the relationship with diabetic foot ulcer formation.

4.
J Cogn Neurosci ; : 1-17, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991125

ABSTRACT

Accumulating evidence suggests that rhythmic temporal cues in the environment influence the encoding of information into long-term memory. Here, we test the hypothesis that these mnemonic effects of rhythm reflect the coupling of high-frequency (gamma) oscillations to entrained lower-frequency oscillations synchronized to the beat of the rhythm. In Study 1, we first test this hypothesis in the context of global effects of rhythm on memory, when memory is superior for visual stimuli presented in rhythmic compared with arrhythmic patterns at encoding [Jones, A., & Ward, E. V. Rhythmic temporal structure at encoding enhances recognition memory, Journal of Cognitive Neuroscience, 31, 1549-1562, 2019]. We found that rhythmic presentation of visual stimuli during encoding was associated with greater phase-amplitude coupling (PAC) between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. In Study 2, we next investigated cross-frequency PAC in the context of local effects of rhythm on memory encoding, when memory is superior for visual stimuli presented in-synchrony compared with out-of-synchrony with a background auditory beat (Hickey et al., 2020). We found that the mnemonic effect of rhythm in this context was again associated with increased cross-frequency PAC between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. Furthermore, the magnitude of gamma power modulations positively scaled with the subsequent memory benefit for in- versus out-of-synchrony stimuli. Together, these results suggest that the influence of rhythm on memory encoding may reflect the temporal coordination of higher-frequency gamma activity by entrained low-frequency oscillations.

5.
Plant Cell ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012965

ABSTRACT

During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically-encoded second generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions and maintaining accumulation in the mature nodule meristem. We show, through mis-expression of GA catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.

6.
Plant Cell ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039020

ABSTRACT

The phytohormone gibberellic acid (GA) is critical for environmentally sensitive plant development including germination, skotomorphogenesis, and flowering. The Förster resonance energy transfer biosensor GIBBERELLIN PERCEPTION SENSOR1, which permits single-cell GA measurements in vivo, has been used to observe a GA gradient correlated with cell length in dark-grown, but not light-grown, hypocotyls. We sought to understand how light signaling integrates into cellular GA regulation. Here, we show how the E3 ligase CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) play central roles in directing cellular GA distribution in skoto- and photomorphogenic hypocotyls, respectively. We demonstrate that the expression pattern of the GA biosynthetic enzyme gene GA20ox1 is the key determinant of the GA gradient in dark-grown hypocotyls and is a target of COP1 signaling. We engineered a second generation GPS2 biosensor with improved orthogonality and reversibility. GPS2 revealed a previously undetectable cellular pattern of GA depletion during the transition to growth in the light. This GA depletion partly explains the resetting of hypocotyl growth dynamics during photomorphogenesis. Achieving cell-level resolution has revealed how GA distributions link environmental conditions with morphology and morphological plasticity. The GPS2 biosensor is an ideal tool for GA studies in many conditions, organs, and plant species.

7.
Ann Pediatr Cardiol ; 17(1): 74-76, 2024.
Article in English | MEDLINE | ID: mdl-38933045

ABSTRACT

A right aortic arch with an isolated left innominate artery from the pulmonary artery is an exceedingly rare congenital cardiac malformation. We describe the management and complex surgical timing considerations in two such cases, successfully operated on day 4 and 7 months of age, including the use of cranial ultrasound as a helpful tool to guide decision-making. We also describe the first reported association of this defect with a 4q25 deletion encompassing the LEF1 gene.

8.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38754421

ABSTRACT

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Subject(s)
CD8-Positive T-Lymphocytes , DNA-Binding Proteins , Interferon Type I , Membrane Proteins , Neoplasms , Signal Transduction , Transcription Factors , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mutation , Neoplasms/immunology , Neoplasms/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Transcription Factors/metabolism , Male , Chemokines/genetics , Chemokines/metabolism
9.
Nat Commun ; 15(1): 3895, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719832

ABSTRACT

Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. Here, we developed a ratiometric GA signaling biosensor by engineering one of the DELLA proteins, to suppress its master regulatory function in GA transcriptional responses while preserving its degradation upon GA sensing. We demonstrate that this degradation-based biosensor accurately reports on cellular changes in GA levels and perception during development. We used this biosensor to map GA signaling activity in the SAM. We show that high GA signaling is found primarily in cells located between organ primordia that are the precursors of internodes. By gain- and loss-of-function approaches, we further demonstrate that GAs regulate cell division plane orientation to establish the typical cellular organization of internodes, thus contributing to internode specification in the SAM.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Biosensing Techniques , Gene Expression Regulation, Plant , Gibberellins , Meristem , Signal Transduction , Gibberellins/metabolism , Meristem/metabolism , Meristem/growth & development , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Growth Regulators/metabolism , Plant Shoots/metabolism , Plant Shoots/growth & development , Plants, Genetically Modified
10.
Cell Rep ; 43(4): 114011, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573854

ABSTRACT

Fatalska et al.1 use an interdisciplinary strategy to elucidate how an intrinsically disordered regulatory subunit of protein phosphatase 1 binds trimeric eIF2 and positions the phosphatase-substrate complex for dephosphorylation. As validation, they show that a disease mutation abolishes the interaction.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Protein Phosphatase 1/metabolism , Humans , Eukaryotic Initiation Factor-2/metabolism , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Protein Binding , Phosphorylation , Protein Subunits/metabolism , Protein Subunits/chemistry , Mutation
11.
Nat Methods ; 21(6): 1033-1043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684783

ABSTRACT

Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of PHLPP1, which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.


Subject(s)
Protein Processing, Post-Translational , Phosphorylation , Humans , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Signal Transduction , HEK293 Cells , Proteomics/methods , High-Throughput Screening Assays/methods , T-Lymphocytes/metabolism , Jurkat Cells , NF-kappa B/metabolism
12.
Head Neck ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661244

ABSTRACT

BACKGROUND: Cancer cachexia is prevalent in head and neck cancer patients. The L3 skeletal muscle index (SMI) is often used to assess sarcopenia and cachexia but is infrequently able to be measured in this population. Masseter muscle thickness (MT) may serve as an alternative predictor of cachexia. METHODS: SMI and MT were calculated from 20 trauma (CTRL) and 40 cachectic (CA-CX) and non-cachectic (CA-NCX) head and neck cancer patients. Area Under the Curve of the Receiver Operating Characteristics (AUC-ROC) analysis was performed for SMI and MT. RESULTS: Both SMI and MT were significantly decreased in CA-CX patients (vs. CA-NCX mean difference -19.5 cm2/m2 and -2.06 mm, respectively) and significant predictors of CA-CX (AUC = 0.985 and 0.805, respectively). When analyzed by sex, the same findings were observed for MT in males and trended toward significance in females. CONCLUSIONS: Compared with SMI, MT is a good alternative prognostic biomarker to determine CA-CX status in HNC patients.

13.
Plant Physiol ; 195(4): 2970-2984, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38669227

ABSTRACT

Arthropod herbivory poses a serious threat to crop yield, prompting plants to employ intricate defense mechanisms against pest feeding. The generalist pest 2-spotted spider mite (Tetranychus urticae) inflicts rapid damage and remains challenging due to its broad target range. In this study, we explored the Arabidopsis (Arabidopsis thaliana) response to T. urticae infestation, revealing the induction of abscisic acid (ABA), a hormone typically associated with abiotic stress adaptation, and stomatal closure during water stress. Leveraging a Forster resonance energy transfer (FRET)-based ABA biosensor (nlsABACUS2-400n), we observed elevated ABA levels in various leaf cell types postmite feeding. While ABA's role in pest resistance or susceptibility has been debated, an ABA-deficient mutant exhibited increased mite infestation alongside intact canonical biotic stress signaling, indicating an independent function of ABA in mite defense. We established that ABA-triggered stomatal closure effectively hinders mite feeding and minimizes leaf cell damage through genetic and pharmacological interventions targeting ABA levels, ABA signaling, stomatal aperture, and density. This study underscores the critical interplay between biotic and abiotic stresses in plants, highlighting how the vulnerability to mite infestation arising from open stomata, crucial for transpiration and photosynthesis, reinforces the intricate relationship between these stress types.


Subject(s)
Abscisic Acid , Arabidopsis , Herbivory , Plant Stomata , Tetranychidae , Animals , Abscisic Acid/metabolism , Tetranychidae/physiology , Plant Stomata/physiology , Arabidopsis/physiology , Arabidopsis/genetics , Arabidopsis/parasitology , Signal Transduction , Plant Leaves/parasitology , Plant Leaves/physiology , Plant Leaves/metabolism
14.
New Phytol ; 241(6): 2448-2463, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308183

ABSTRACT

The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism
15.
Am J Otolaryngol ; 45(3): 104214, 2024.
Article in English | MEDLINE | ID: mdl-38218029

ABSTRACT

PURPOSE: To determine the occult nodal disease rate and whether elective regional lymph node dissection (RLND) confers any 10-year overall survival (OS) in cN0 intermediate-grade mucoepidermoid carcinoma (MEC) of the parotid gland. MATERIALS & METHODS: The National Cancer Database was reviewed from 2004 to 2016 on adults with cT1-4aN0M0 intermediate-grade parotid MEC undergoing resection with/without RLND. Comparisons between patients with and without RLND were made. Occult nodal rate and 10-year overall survival (OS) were determined. RESULTS: Out of 898 included patients with cN0 intermediate grade parotid MEC undergoing elective RLND, the occult nodal rate was 7.6%. This was significantly different from low-grade (3.9%) and high-grade (25.7%) cN0 disease. When stratified by pT-classification, marginal differences were identified between low-grade and intermediate-grade tumors, whereas high-grade tumors demonstrated increased occult nodal disease with low T-stage (pT1-pT2, 20.4% vs. 5.1%) and high T-stage (pT3-pT4a, 32.1% vs. 17.6%). Patients undergoing elective RLND were more often treated at an academic facility (53.8% vs. 41.2%), had higher pT3-pT4 tumors (19.2% vs. 10.4%), and more frequently underwent total/radical parotidectomy (46.0% vs. 29.9%) with adjuvant radiation therapy (53.8% vs. 41.0%) Cox-proportional hazard modeling did not identify RLND, regardless if stratified by nodal yield or pT-classification, nor nodal positivity as significant predictors of 10-year OS. CONCLUSIONS: The occult nodal disease in intermediate-grade parotid MEC is low and similar to low-grade. Elective RLND may have a limited impact on OS, though its effect on locoregional control remains unknown. LEVEL OF EVIDENCE: III.


Subject(s)
Carcinoma, Mucoepidermoid , Elective Surgical Procedures , Lymph Node Excision , Neoplasm Staging , Parotid Neoplasms , Humans , Carcinoma, Mucoepidermoid/pathology , Carcinoma, Mucoepidermoid/surgery , Carcinoma, Mucoepidermoid/mortality , Parotid Neoplasms/pathology , Parotid Neoplasms/surgery , Parotid Neoplasms/mortality , Male , Female , Middle Aged , Adult , Neoplasm Grading , Aged , Survival Rate , Lymphatic Metastasis , Parotid Gland/surgery , Parotid Gland/pathology , Retrospective Studies , Databases, Factual
16.
J Infect Public Health ; 17(2): 299-307, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154433

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is an opportunistic bacterium that causes serious hospital-acquired infections. To assess the risk of clinically isolated P. aeruginosa to human health, we analyzed the resistance and virulence mechanisms of a collection of clinical isolates. METHODS: This was a retrospective study in which P. aeruginosa isolates collected from January 1, 2018 to August 31, 2019 were analyzed using phenotypic and whole-genome sequencing (WGS) methods. The analysis included 48 clinical samples. Median patient age was 54.0 (29.5) years, and 58.3% of patients were women. Data from the microbiology laboratory database were reviewed to identify P. aeruginosa isolates. All unique isolates available for further testing were included, and related clinical data were collected. Infections were defined as hospital acquired if the index culture was obtained at least 48 h after hospitalization. RESULTS: High-risk P. aeruginosa clones, including sequence types (STs) ST235 and ST111, were identified, in addition to 12 new STs. The isolates showed varying degrees of biofilm formation ability when evaluated at room temperature, along with reduced metabolic activity, as measured by metabolic staining, suggesting their ability to evade antimicrobial therapy. Most isolates (77.1%) were multidrug resistant (MDR), with the highest resistance and susceptibility rates to beta-lactams and colistimethate sodium, respectively. CONCLUSIONS: The MDR phenotypes of the examined isolates can be explained by the high prevalence of efflux-mediated resistance- and hydrolytic enzyme-encoding genes. These isolates had high cytotoxic potential, as indicated by the detection of toxin production-related genes.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Humans , Female , Middle Aged , Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Virulence/genetics , Pseudomonas aeruginosa , Retrospective Studies , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Whole Genome Sequencing , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL