Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 15(1): 173, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886817

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is a disease that causes permanent impairment of motor, sensory, and autonomic nervous system functions. Stem cell transplantation for neuron regeneration is a promising strategic treatment for SCI. However, selecting stem cell sources and cell transplantation based on experimental evidence is required. Therefore, this study aimed to investigate the efficacy of combination cell transplantation using the brain-derived neurotrophic factor (BDNF) over-expressing engineered mesenchymal stem cell (BDNF-eMSC) and induced pluripotent stem cell-derived motor neuron progenitor cell (iMNP) in a chronic SCI rat model. METHOD: A contusive chronic SCI was induced in Sprague-Dawley rats. At 6 weeks post-injury, BDNF-eMSC and iMNP were transplanted into the lesion site via the intralesional route. At 12 weeks post-injury, differentiation and growth factors were evaluated through immunofluorescence staining and western blot analysis. Motor neuron differentiation and neurite outgrowth were evaluated by co-culturing BDNF-eMSC and iMNP in vitro in 2-dimensional and 3-dimensional. RESULTS: Combination cell transplantation in the chronic SCI model improved behavioral recovery more than single-cell transplantation. Additionally, combination cell transplantation enhanced mature motor neuron differentiation and axonal regeneration at the injured spinal cord. Both BDNF-eMSC and iMNP played a critical role in neurite outgrowth and motor neuron maturation via BDNF expression. CONCLUSIONS: Our results suggest that the combined transplantation of BDNF- eMSC and iMNP in chronic SCI results in a significant clinical recovery. The transplanted iMNP cells predominantly differentiated into mature motor neurons. Additionally, BDNF-eMSC exerts a paracrine effect on neuron regeneration through BDNF expression in the injured spinal cord.


Subject(s)
Brain-Derived Neurotrophic Factor , Disease Models, Animal , Induced Pluripotent Stem Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Motor Neurons , Nerve Regeneration , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Rats , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Motor Neurons/metabolism , Mesenchymal Stem Cell Transplantation/methods , Axons/metabolism , Cell Differentiation , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/transplantation
2.
Int J Stem Cells ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38604748

ABSTRACT

Acetaldehyde dehydrogenase 2 (ALDH2) is the second enzyme involved in the breakdown of acetaldehyde into acetic acid during the process of alcohol metabolism. Roughly 40% of East Asians carry one or two ALDH2*2 alleles, and the presence of ALDH2 genetic mutations in individuals may affect the bone remodeling cycle owing to accumulation of acetaldehyde in the body. In this study, we investigated the effects of ALDH2 mutations on bone remodeling. In this study, we examined the effects of ALDH2 polymorphisms on in vitro osteogensis using human induced pluripotent stem cells (hiPSCs). We differentiated wild-type (ALDH2*1/*1-) and ALDH2*1/*2-genotyped hiPSCs into osteoblasts (OBs) and confirmed their OB characteristics. Acetaldehyde was administered to confirm the impact caused by the mutation during OB differentiation. Calcium deposits formed during osteogenesis were significantly decreased in ALDH2*1/*2 OBs. The expression of osteogenic markers were also decreased in acetaldehyde-treated OBs differentiated from the ALDH2*1/*2 hiPSCs. Furthermore, the impact of ALDH2 polymorphism and acetaldehyde-induced stress on inflammatory factors such as 4-hydroxynonenal and tumor necrosis factor α was confirmed. Our findings suggest that individuals with ALDH2 deficiency may face challenges in acetaldehyde breakdown, rendering them susceptible to disturbances in normal bone remodeling therefore, caution should be exercised regarding alcohol consumption. In this proof-of-concept study, we were able to suggest these findings as a result of a disease-in-a-dish concept using hiPSCs derived from individuals bearing a certain mutation. This study also shows the potential of patient-derived hiPSCs for disease modeling with a specific condition.

3.
Sci Rep ; 14(1): 2477, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291053

ABSTRACT

Osteoporosis is a metabolic bone disease that impairs bone mineral density, microarchitecture, and strength. It requires continuous management, and further research into new treatment options is necessary. Osteoprotegerin (OPG) inhibits bone resorption and osteoclast activity. The objective of this study was to investigate the effects of stepwise administration of OPG-encoded minicircles (mcOPG) and a bone formation regulator, parathyroid hormone-related peptide (PTHrP)-encoded minicircles (mcPTHrP) in osteoporosis. The combined treatment with mcOPG and mcPTHrP significantly increased osteogenic marker expression in osteoblast differentiation compared with the single treatment groups. A model of postmenopausal osteoporosis was established in 12-week-old female rats through ovariectomy (OVX). After 8 weeks of OVX, mcOPG (80 µg/kg) was administered via intravenous injection. After 16 weeks of OVX, mcPTHrP (80 µg/kg) was injected once a week for 3 weeks. The bone microstructure in the femur was evaluated 24 weeks after OVX using micro-CT. In a proof-of-concept study, stepwise treatment with mcOPG and mcPTHrP on an OVX rat model significantly improved bone microstructure compared to treatment with mcOPG or mcPTHrP alone. These results suggest that stepwise treatment with mcOPG and mcPTHrP may be a potential treatment for osteoporosis.


Subject(s)
Osteogenesis , Osteoporosis , Humans , Rats , Female , Animals , Parathyroid Hormone-Related Protein/pharmacology , Rats, Sprague-Dawley , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , Osteoporosis/genetics , Bone Density , Ovariectomy
SELECTION OF CITATIONS
SEARCH DETAIL
...