Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1220116, 2023.
Article in English | MEDLINE | ID: mdl-37547676

ABSTRACT

Fruit rot caused by Colletotrichum magnum is a crucial watermelon disease threatening the production and quality. To understand the pathogenic mechanism of C. magnum, we optimized the Agrobacterium tumefaciens-mediated transformation system (ATMT) for genetic transformation of C. magnum. The transformation efficiency of ATMT was an average of around 245 transformants per 100 million conidia. Southern blot analysis indicated that approximately 75% of the mutants contained a single copy of T-DNA. Pathogenicity test revealed that three mutants completely lost pathogenicity. The T-DNA integration sites (TISs) of three mutants were Identified. In mutant Cm699, the TISs were found in the intron region of the gene, which encoded a protein containing AP-2 complex subunit σ, and simultaneous gene deletions were observed. Two deleted genes encoded the transcription initiation protein SPT3 and a hypothetical protein, respectively. In mutant Cm854, the TISs were found in the 5'-flanking regions of a gene that was similar to the MYO5 encoding Myosin I of Pyricularia oryzae (78%). In mutant Cm1078, the T-DNA was integrated into the exon regions of two adjacent genes. One was 5'-3' exoribonuclease 1 encoding gene while the other encoded a WD-repeat protein retinoblastoma binding protein 4, the homolog of the MSl1 of Saccharomyces cerevisiae.

2.
J Exp Bot ; 74(17): 5218-5235, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37235634

ABSTRACT

Understanding the mechanisms underlying plant resistance to virus infections is crucial for viral disease management in agriculture. However, the defense mechanism of watermelon (Citrullus lanatus) against cucumber green mottle mosaic virus (CGMMV) infection remains largely unknown. In this study, we performed transcriptomic, metabolomic, and phytohormone analyses of a CGMMV susceptible watermelon cultivar 'Zhengkang No.2' ('ZK') and a CGMMV resistant wild watermelon accession PI 220778 (PI) to identify the key regulatory genes, metabolites, and phytohormones responsible for CGMMV resistance. We then tested several phytohormones and metabolites for their roles in watermelon CGMMV resistance via foliar application, followed by CGMMV inoculation. Several phenylpropanoid metabolism-associated genes and metabolites, especially those involved in the flavonoid biosynthesis pathway, were found to be significantly enriched in the CGMMV-infected PI plants compared with the CGMMV-infected 'ZK' plants. We also identified a gene encoding UDP-glycosyltransferase (UGT) that is involved in kaempferol-3-O-sophoroside biosynthesis and controls disease resistance, as well as plant height. Additionally, salicylic acid (SA) biogenesis increased in the CGMMV-infected 'ZK' plants, resulting in the activation of a downstream signaling cascade. SA levels in the tested watermelon plants correlated with that of total flavonoids, and SA pre-treatment up-regulated the expression of flavonoid biosynthesis genes, thus increasing the total flavonoid content. Furthermore, application of exogenous SA or flavonoids extracted from watermelon leaves suppressed CGMMV infection. In summary, our study demonstrates the role of SA-induced flavonoid biosynthesis in plant development and CGMMV resistance, which could be used to breed for CGMMV resistance in watermelon.


Subject(s)
Citrullus , Tobamovirus , Transcriptome , Citrullus/genetics , Citrullus/metabolism , Plant Growth Regulators/metabolism , Plant Breeding , Tobamovirus/genetics , Plant Diseases/genetics
3.
Plant Dis ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37081636

ABSTRACT

In autumn 2022, a novel and devastating viral disease affecting cucurbits emerged in Ningbo (Zhejiang province), Haimen (Jiangsu province), and Shanghai, China, causing an approximate 650-hectare infestation and resulting in nearly US$15 million in economic losses. The incidence rates of infection reached up to 72.5% on muskmelon (Cucumis melo L. ssp melo), oriental melon (Cucumis melo L. var. agrestis), pumpkin (Cucurbita moschata), luffa (Luffa acutangula), and squash (Cucurbita pepo), and were highly associated with the presence of whitefly (Bemisia tabaci). Infected plants exhibited symptoms such as dwarf stunting, reduced leaf size, leaf chlorotic patches, malformation, fruit deformation, leaf downward rolling, and yellowing (Figure 1). To identify the pathogen, forty cucurbit leaf samples were collected from Haimen (18), Ningbo (19), and Shanghai (3) and tested for cucurbits chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and Begomovirus using RT-PCR or PCR. All samples tested negative for CCYV and CYSDV using species-specific primers; however, 29 out of 40 samples tested positive (see Supplementary Table 1) for Begomovirus using the degenerate primer pairs PA/PB (Deng et al. 1994). PCR products from seven samples, representing different regions and hosts, underwent Sanger sequencing. The nucleotide sequences of these products showed 98.2-99% identity to tomato leaf curl New Delhi virus (ToLCNDV) by BLASTn. Subsequently, the 29 positive cucurbit samples were confirmed using ToLCNDV-specific primer pairs NDVAF/NDVAR and NDVBF/NDVBR (Jyothsna et al. 2013) for DNA-A and DNA-B, respectively. The DNA-A and DNA-B genome sequences of ToLCNDV isolates from Haimen (Haimen4), Ningbo (Ningbo6), and Shanghai (Shanghai1) were obtained using the primer pairs NDVAF/NDVAR, A1961F/A2645R (covering complete DNA-A sequences), NDVBF/NDVBR, and B1613F/B2579R (covering complete DNA-B sequences,see Supplementary Table 2). No amplicon was produced with primer pairs UNA101/UNA102 and beta01/beta02 (Supplementary Table 2) for detecting Alphasatellite and Betasatellite DNAs, respectively. The complete DNA-A genome sequences (2739 bp) of Haimen 4 (accession no. OP585369), Ningbo 6 (accession no. OP585370), and Shanghai 1 (accession no. OP683993) isolates exhibited 99.5-99.6% nucleotide identity to each other, and their highest nucleotide sequence identity (99.3-99.4%) was shared with the DNA-A of ToLCNDV-Zhejiang isolate (accession no. OP356207) from tomato in Zhejiang Province, China. The complete nucleotide sequences (2693 nt) of DNA-B for Haimen 4 (accession no. OP683995), Ningbo 6 (accession no. OP683996), and Shanghai 1 (accession no. OP683994) isolates showed 99.0-99.1% identity to each other, and their highest nucleotide sequence identity (~99.1%) was shared with the DNA-B of ToLCNDV-Zhejiang isolate (accession no. OP356208).All ToLCNDV isolates from mainland China, including the Zhejiang isolate and the three isolates in this study, shared 98.3-98.7% nucleotide sequence identity and 98.2-98.4% with the DNA-A genome of the severe isolate (accession no. HM159454) from tomato in New Delhi, India, and the DNA-B genome of the India:Delhi:Cucumis:2012 isolate from cucumber in New Delhi, India, respectively. However, the genome sequence identities between mainland and Taiwan isolates (accession nos. GU180095 and GU180096) were below 93%, suggesting that mainland China isolates of ToLCNDV are more closely related to the India isolate than to the Taiwan isolate.To fulfill Koch's postulates, infectious clones of the Haimen 4 isolate were constructed and agroinfiltrated into muskmelon, oriental melon, pumpkin, luffa, and squash plants. In brief, two plasmids, containing 1.56-mer DNA-A and 1.4-mer DNA-B genome sequences, were constructed using enzyme digestion and ligation, transformed into Agrobacterium tumefaciens strain GV3101, respectively, and then co-agroinfiltrated into cucurbit plants. Initial symptoms appeared in the new leaves at 7 days post-inoculation (DPI), followed by severe leaf curling, dwarfing, stunting, reduced leaf size, and chlorotic leaf patches at 18 DPI. The presence of DNA-A and DNA-B of ToLCNDV in inoculated plants was confirmed by PCR using primer pairs A1961F/A2645R and B1613F/B2579R, respectively. Collectively, the pathogen of this emerging disease has been identified as ToLCNDV. ToLCNDV was first reported on tomato in India and is now the most predominant and economically significant disease affecting cucurbit and solanaceous crops in Southeast and East Asia, the Middle East, and the Mediterranean Basin (Moriones et al. 2017). In China, ToLCNDV was initially reported on oriental melon in Taiwan (Chang et al. 2010) and subsequently on tomato (Lycopersicon esculentum) in Zhejiang province (Li et al. 2022). To the best of our knowledge, this is the first report of ToLCNDV infecting muskmelon, pumpkin, luffa, and squash in China. Further investigations on the epidemiology of this viral disease in China are needed.

4.
Mol Plant Pathol ; 24(8): 961-972, 2023 08.
Article in English | MEDLINE | ID: mdl-37118922

ABSTRACT

RNA silencing, a core part of plants' antiviral defence, requires the ARGONAUTE, DICER-like, and RNA-dependent RNA polymerase proteins. However, how these proteins contribute to watermelon's RNA interference (RNAi) pathway response to cucumber green mottle mosaic virus (CGMMV) has not been characterized. Here, we identify seven ClAGO, four ClDCL, and 11 ClRDR genes in watermelon and analyse their expression profiles when infected with CGMMV. ClAGO1 and ClAGO5 expression levels were highly induced by CGMMV infection. The results of ClAGO1 and ClAGO5 overexpression and silencing experiments suggest that these genes play central roles in watermelon's antiviral defence. Furthermore, co-immunoprecipitation and bimolecular fluorescence complementation experiments showed that ClAGO1 interacts with ClAGO5 in vivo, suggesting that ClAGO1 and ClAGO5 co-regulate watermelon defence against CGMMV infection. We also identified the ethylene response factor (ERF) binding site in the promoters of the ClAGO1 and ClAGO5 genes, and ethylene (ETH) treatment significantly increased ClAGO5 expression. Two ERF genes (Cla97C08G147180 and Cla97C06G122830) closely related to ClAGO5 expression were identified using co-expression analysis. Subcellular localization revealed that two ERFs and ClAGO5 predominantly localize at the nucleus, suggesting that enhancement of resistance to CGMMV by ETH is probably achieved through ClAGO5 but not ClAGO1. Our findings reveal aspects of the mechanisms underlying RNA silencing in watermelon against CGMMV.


Subject(s)
Citrullus , Tobamovirus , Citrullus/metabolism , Tobamovirus/genetics , Promoter Regions, Genetic , Ethylenes/metabolism , Plant Diseases
5.
Front Plant Sci ; 14: 1332037, 2023.
Article in English | MEDLINE | ID: mdl-38273961

ABSTRACT

Introduction: Ethylene (ET) is involved in plant responses to viral infection. However, its molecular mechanisms and regulatory network remain largely unknown. Methods and results: In the present study, we report that cucumber green mottle mosaic virus (CGMMV) in watermelon (Citrullus lanatus) triggers ET production by inducing the expression of ClACO5, a key gene of the ET biosynthesis pathway through transcriptome data analysis and gene function validation. The knock-down of ClACO5 expression through virus-induced gene silencing in watermelon and overexpressing ClACO5 in transgenic Nicotiana benthamiana indicated that ClACO5 positively regulates CGMMV resistance and ET biosynthesis. The salicylic acid-responsive transcription factor gene ClWRKY70 shares a similar expression pattern with ClACO5. We demonstrate that ClWRKY70 directly binds to the W-box cis-element in the ClACO5 promoter and enhances its transcription. In addition, ClWRKY70 enhances plant responses to CGMMV infection by regulating ClACO5 expression in watermelon. Discussion: Our results demonstrate that the ClWRKY70-ClACO5 module positively regulates resistance to CGMMV infection in watermelon, shedding new light on the molecular basis of ET accumulation in watermelon in response to CGMMV infection.

6.
Plant Dis ; 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36576385

ABSTRACT

In June 2021, bacterial stem rot-like symptoms were observed on the stems and leaves of watermelon (Citrullus lanatus cv. 'Zaojia') in Pingyu County, Zhumadian City, Henan Province, China (32.44N 114.24E), which showed brown to dark brown lesions on the stems (Fig. 1A). The stems then became scorched, and the leaves showed necrotic lesions with small water-soaked spots (Fig. 1B). Watermelon is a very important economic plant in this small county, where the watermelon planting area accounts for about 15% of the arable land area. Approximately 2 hectares of 'Zaojia' have been investigated, and the disease incidence rates were almost 20~30%, thus, causing severe economic losses. Ten symptomatic watermelon stems and leaves were randomly collected based on the typical symptoms, brought into the Lab and used to isolate the pathogen. Each infected tissue was excised and cut into small pieces (about 5 mm×5 mm) and surface disinfected with 1% NaClO for 3 min. The pieces were then rinsed three times in sterile distilled water (SDW) and dried by airing. These pieces (4-5 pieces per sample) were macerated in 200 µL SDW for 60 s in a sterile mortar and pestle. A volume of 5 µL suspensions of each sample were streaked onto two LB agar plates and incubated for 48 h at 28 °C in the dark. After incubation, the colonies on LB agar plate were small, round, raised, white to cream-colored, and had smooth margins (Fig. 2). Two strains from each plate were selected. The genomic DNA of all 40 strains was extracted using a Bacterial Genomic DNA Extraction Kit D1600 (Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) according to the manufacturer's instructions. The 16S ribosomal RNA gene (27F:5'-AGA GTT TGA TCC TGG CTC AG-3', /1492R: 5'-CTA CGG CTA CCT TGT TAC GA-3'), and the three housekeeping genes, including gyrB (Trantas et al., 2013), icdA and proA (Ma et al., 2007), were amplified. Sequence analysis showed that 40 strains shared the same sequence, so only one sequence was submitted into GenBanK.The 16s rDNA partial sequences (SUB12134746) shared 100% similarity with E.mori (CP084692.1), and the gyrB (OP676246), icdA (OP676248) and proA (OP676247) genes shared 98.67%, 99.39% and 97.99% homology with those of E. mori (CP084692.1), respectively. Besides, the phylogenetic tree analysis based on multi-housekeeping gene joint gryB-icdA-proA showed that E.mori(OP676246-OP676248- OP676247)from watermelon was culsterd with the E.mori (CP084692.1) from South Korea and E.mori (CP055276.1) from kiwifruit (Fig. 3). Thus, E.mori was confirmed to be the pathogen responsible for bacterial soft rot of watermelon in this study. To confirm the pathogenicity, 15-day-old healthy cv. 'Zaojia' watermelon seedlings were inoculated by spraying all the seedlings with a bacterial suspension (1×10 8 CFU mL-1) at an incubation temperature of 28 °C and 70% relative humidity, and sterile distilled liquid LB medium was applied as a negative control treatment. Three times were conducted for the isolate, and each time included nine watermelon plants. After 10 days, only the inoculated cotyledons and leaves with the bacterial suspension showed bacterial leaf spots that resembled those observed on naturally infected watermelon cotyledons and leaves (Fig. 4A-C), whereas the control plants remained asymptomatic (Fig. 4D). Simultaneously, the watermelon stems were inoculated with the bacterium in vitro. Each stem was slightly wounded with a metal sponge and then sprayed with the bacterial suspension (108 CFU mL-1) of each isolate, and the experiment was repeated three times. Water-soaked symptoms were visible on the stems (Fig. 4E), while the control plants remained asymptomatic (Fig. 4F). The strains were then successfully re-isolated and identified by sequence analyses of their 16S ribosomal RNA gene and gyrB, icdA and proA genes. Therefore, the inoculation experiment of the isolatedbacterium fulfilled Koch's postulates. Previously, E. mori has been reported to cause bacterial wilt on white mulberry (Morus alba L.) (Zhu et al. 2022), peach fruit (Prunus persica) (Ahmad et al. 2021) and kiwifruit (Actinidia deliciosa [A. Chev.] CF Liang et AR Ferguson) (Zhang et al. 2021). To our knowledge, this is the first report of E. mori causing bacterial soft rot on watermelon in world.

7.
Front Microbiol ; 13: 980147, 2022.
Article in English | MEDLINE | ID: mdl-36060769

ABSTRACT

Squash leaf curl China virus (SLCCNV) is a bipartite Begomovirus. The function of the protein AC5, which is encoded by SLCCNV, is unknown. Here, we confirmed that the 172-amino acids (aa) long AC5 protein of SLCCNV could suppress single-stranded RNA but not double-stranded RNA-induced post-transcriptional gene silencing (PTGS). Furthermore, we determined that the C-terminal domain (96-172 aa) of the AC5 protein was responsible for RNA silencing suppressor (RSS) activity via deletion mutant analysis. The AC5 protein can reverse GFP silencing and inhibit systemic silencing of GFP by interfering with the systemic spread of the GFP silencing signal. The SLCCNV AC5 protein was localized to both the nucleus and cytoplasm of Nicotiana benthamiana cells. Furthermore, deletion analysis showed that the putative nuclear localization signal (NLS, 102-155 aa) was crucial for the RNA silencing suppression activity of AC5. In addition, the AC5 protein elicited a hypersensitive response and enhanced potoao virus X (PVX) RNA accumulation in infected N. benthamiana plants. Using the infectious clones of the SLCCNV and SLCCNV-AC5 null mutants, mutational analysis confirmed that knockout of the AC5 gene abolished SLCCNV-induced leaf curl symptoms, showing SLCCNV AC5 is also a virulence determinant.

8.
J Fungi (Basel) ; 8(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36012779

ABSTRACT

Colletotrichum species are important plant pathogens, causing anthracnose in virtually every crop grown throughout the world. However, little is known about the species that infect watermelon. A total of 526 strains were isolated from diseased watermelon samples of eight major watermelon growing provinces in China. Phylogenetic analyses using seven loci (ITS, gadph, chs-1, his3, act, tub2, and gs) coupled with morphology of 146 representative isolates showed that they belonged to 12 known species of Colletotrichum, including C. aenigma, C. chlorophyti, C. fructicola, C. jiangxiense, C. karstii, C. magnum, C. nymphaeae, C. nigrum, C. orbiculare, C. plurivorum, C. sojae, and C. truncatum and three new species, here described as C. citrulli, C. kaifengense, and C. qilinense. Colletotrichum orbiculare was the dominant species. Pathogenicity tests revealed that all isolates of the species described above were pathogenic, with C. magnum and C. kaifengense being the most aggressive to leaves and fruits, respectively. This is the first report of C. aenigma, C. chlorophyti, C. fructicola, C. jiangxiense, C. nymphaeae, C. nigrum, C. plurivorum, and C. sojae on watermelon. These findings shed light on the Colletotrichum spp. involved in watermelon anthracnose and provide useful information for implementing effective control of watermelon anthracnose in China.

9.
Virus Res ; 315: 198779, 2022 07 02.
Article in English | MEDLINE | ID: mdl-35427675

ABSTRACT

Melon aphid-borne yellows virus (MABYV), a member of the genus Polerovirus in the family Solemoviridae, has widely spread in recent years and cause yellowing disease on cucurbits. Here, we obtained the complete genome sequence of MABYV bottle guard (Lagenaria siceraria) isolate MABYV-KF, and constructed its infectious cDNA clone under the control of the cauliflower mosaic virus (CaMV) 35S promoter by Gibson assembly. The 5,677 nt of its genome shared more than 94.00% sequence identity with the two known MABYV isolates. The inoculation results showed that MABYV infectious cDNA clone could systemically infect bottle guard, cucumber and muskmelon plants, and cause typical yellowing symptom. The virus progeny from the infectious clone could be transmitted between bottle guard plants by aphid. Further analyses revealed that point mutations in the F-box-like motif (Pro57) and C-terminal conserved sequence (Phe211) of P0 cause low viral accumulations in systematic leaves and failed to induce symptom. The infectious clone will be potentially a tool in the investigation of viral pathogenesis, virus-virus interaction and virus-host/-vector interactions.


Subject(s)
Aphids , Cucurbita , Viruses, Unclassified , Agrobacterium/genetics , Animals , Clone Cells , DNA, Complementary/genetics , Viruses, Unclassified/genetics
11.
Front Microbiol ; 12: 773992, 2021.
Article in English | MEDLINE | ID: mdl-34803995

ABSTRACT

Recombination drives evolution of single-stranded RNA viruses and contributes to virus adaptation to new hosts and environmental conditions. Intraspecific recombinants are common in potyviruses, the largest family of single-stranded RNA viruses, whereas interspecific recombinants are rare. Here, we report an interspecific recombination event between papaya ringspot potyvirus (PRSV) and zucchini tigre mosaic potyvirus (ZTMV), two potyviruses infecting cucurbit crops and sharing similar biological characteristics and close phylogenetic relationship. The PRSV-ZTMV recombinants were detected through small RNA sequencing of viruses infecting cucurbit samples from Guangxi and Henan provinces of China. The complete nucleotide (nt) sequences of the interspecific recombinant viruses were determined using overlapping RT-PCR. Multiple sequence alignment, recombination detection analysis and phylogenetic analysis confirmed the interspecific recombination event, and revealed an additional intraspecific recombination event among ZTMV populations in China. The symptoms and host ranges of two interspecific recombinant isolates, KF8 and CX1, were determined through experimental characterization using cDNA infectious clones. Surveys in 2017 and 2018 indicated that the incidences of the interspecific recombinant virus were 16 and 19.4%, respectively, in cucurbits in Kaifeng of Henan province. The identified interspecific recombinant virus between PRSV and ZTMV and the novel recombination pattern with the recombination site in HC-pro in potyvirid provide insights into the prevalence and evolution of ZTMV and PRSV in cucurbits.

12.
Plant Methods ; 16: 9, 2020.
Article in English | MEDLINE | ID: mdl-32025236

ABSTRACT

BACKGROUND: Cucurbits produce fruits or vegetables that have great dietary importance and economic significance worldwide. The published genomes of at least 11 cucurbit species are boosting gene mining and novel breeding strategies, however genetic transformation in cucurbits is impractical as a tool for gene function validation due to low transformation efficiency. Virus-induced gene silencing (VIGS) is a potential alternative tool. So far, very few ideal VIGS vectors are available for cucurbits. RESULTS: Here, we describe a new VIGS vector derived from cucumber green mottle mosaic virus (CGMMV), a monopartite virus that infects cucurbits naturally. We show that the CGMMV vector is competent to induce efficient silencing of the phytoene desaturase (PDS) gene in the model plant Nicotiana benthamiana and in cucurbits, including watermelon, melon, cucumber and bottle gourd. Infection with the CGMMV vector harboring PDS sequences of 69-300 bp in length in the form of sense-oriented or hairpin cDNAs resulted in photobleaching phenotypes in N. benthamiana and cucurbits by PDS silencing. Additional results reflect that silencing of the PDS gene could persist for over two months and the silencing effect of CGMMV-based vectors could be passaged. CONCLUSIONS: These results demonstrate that CGMMV vector could serve as a powerful and easy-to-use tool for characterizing gene function, controlling viral pathogens or even performing resistance breeding in cucurbits. Moreover, this study will possess considerable important reference value for developing different viral vectors.

13.
RNA Biol ; 17(4): 596-607, 2020 04.
Article in English | MEDLINE | ID: mdl-31983318

ABSTRACT

Phytoene synthase (PSY) has been considered as an important regulatory enzyme in carotenoids biosynthesis pathway. Previous study finds that the yellow fruit in Solanum lycopersicum var. cerasiforme accession PI 114490 is caused by loss-of-function of SlPSY1 due to trans-splicing between SlPsy1 and an unknown gene transcribed from neighbour opposite strand DNA of SlPsy1. The genomic DNA sequences of SlPsy1 between red and yellow-fruited tomato lines have one single-nucleotide polymorphism (SNP) in the fourth intron and one SSR in the intergenic region. In the current study, the cause of trans-splicing event was further investigated. The data showed that the previously defined unknown gene was a putative long non-coding RNA ACoS-AS1 with three variants in many yellow-fruited tomato lines. The intronic SNP and intergenic SSR were tightly associated with trans-splicing event SlPsy1-ACoS-AS1. However, transgenic tomato lines carrying the genomic DNA of SlPsy1 from PI 114490 did not generate transcripts of ACoS-AS1and SlPsy1-ACoS-AS1 suggesting that only the intronic SNP could not cause the trans-splicing event. Over-expression of SlPsy1-ACoS-AS1 in red-fruited tomato line M82 did not have any phenotype change while over-expression of wild type SlPsy1 resulted in altered leaf colour. Sub-cellular localization analysis showed that SlPSY1-ACoS-AS1 could not enter plastids where SlPSY1 has its enzyme activity. Mutation of ACoS-AS1 in PI 114490 generated by CRISPR/Cas9 techniques resulted in red fruits implying that ACoS-AS1 was essential to trans-splicing event SlPsy1-ACoS-AS1. The results obtained here will extend knowledge to understand the mechanism of trans-splicing event SlPsy1-ACoS-AS1 and provide additional information for the regulation of carotenoids biosynthesis.


Subject(s)
Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics , Solanum lycopersicum/growth & development , Introns , Loss of Function Mutation , Solanum lycopersicum/genetics , Phenotype , Plant Proteins/genetics , RNA, Plant/genetics , Trans-Splicing
14.
Arch Virol ; 164(8): 2187-2191, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31123960

ABSTRACT

Here, we report a novel member of the genus Polerovirus, zucchini aphid-borne yellows virus (ZABYV), which was identified in zucchini grown for seed production in the Xinjiang Uygur Autonomous Region, China. The complete nucleotide sequence of the ZABYV genome was determined and found to be 5,792 nucleotides in length, and like those of other poleroviruses, to contain seven open reading frames (ORFs). Multiple sequence alignments and phylogenetic analysis indicated that ZABYV is a new member of the genus Polerovirus, although several regions of its genome are closely related to chickpea chlorotic stunt virus (CpCSV). Further comparative analysis suggested that ZABYV originated from a recombination event between CpCSV and another unknown virus in the genus Polerovirus.


Subject(s)
Cucurbita/virology , Genome, Viral/genetics , Luteoviridae/genetics , Animals , Aphids/virology , Base Sequence/genetics , China , Open Reading Frames/genetics , Phylogeny , Plant Diseases/virology , RNA, Viral/genetics
15.
Arch Virol ; 163(6): 1449-1454, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29426994

ABSTRACT

In this study, we found that the infectivity of zucchini yellow mosaic virus (ZYMV) in watermelon lines H1 and K6 changed from partial to complete after propagation in the susceptible watermelon line ZXG637. When using cucumber infected with strain ZYMV-CH87 as an inoculum (named ZYMV-CH87C), the mean incidences of infection in lines H1 and K6 were 6% and 11%, respectively. However, when these lines were inoculated with ZXG637 infected with ZYMV-CH87C (named ZYMV-637), 100% of the plants became infected. Sequencing of ZYMV from these different inoculums revealed two nucleotide changes in the P3 cistron in ZYMV-637, which resulted in changes in the amino acids at positions 768 and 857 of the P3 protein, compared with the original strain ZYMV-CH87. We named this variant the M768I857-variant. The M768I857-variant was detected at low levels (3.9%) in ZYMV-CH87C. When ZYMV-CH87C was passaged with ZXG637, the M768I857-variant was selected by the host, and the original sequence was replaced entirely after two passages. These results may be explained by host-associated selection due to an unknown host-encoded factor. Using the M768I857-variant as an inoculum, 100% of the H1 and K6 plants showed systemic symptoms. These results suggest that (1) changing the individual amino acids at the end of the P3 N-terminus induces resistance-breaking, and (2) the P3 N-terminus may be involved in host recognition.


Subject(s)
Citrullus/genetics , Disease Resistance/genetics , Gene Expression Regulation, Viral , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Potyvirus/pathogenicity , Amino Acid Sequence , Amino Acid Substitution , Citrullus/immunology , Citrullus/virology , Cucumis sativus/genetics , Cucumis sativus/immunology , Cucumis sativus/virology , Disease Susceptibility , High-Throughput Nucleotide Sequencing , Mutation , Plant Diseases/immunology , Potyvirus/genetics , Sequence Alignment , Virulence
16.
Viruses ; 10(1)2017 12 25.
Article in English | MEDLINE | ID: mdl-29295571

ABSTRACT

Cucumber green mottle mosaic virus (CGMMV) is one of the most devastating viruses infecting members of the family Cucurbitaceae. The assembly initiation site of CGMMV is located in the coding region of the coat protein, which is not only involved in virion assembly but is also a key factor determining the long-distance movement of the virus. To understand the effect of assembly initiation site and the adjacent region on CGMMV infectivity, we created a GTT deletion mutation in the GAGGTTG assembly initiation site of the infectious clone of CGMMV, which we termed V97 (deletion mutation at residue 97 of coat protein), followed by the construction of the V94A and T104A mutants. We observed that these three mutations caused mosaic after Agrobacterium-mediated transformation in Nicotiana benthamiana, albeit with a significant delay compared to the wild type clone. The mutants also had a common spontaneous E96K mutation in the coat protein. These results indicated that the initial assembly site and the sequence of the adjacent region affected the infectivity of the virus and that E96 might play an essential role in this process. We constructed two single point mutants-E96A and E96K-and three double mutants-V94A-E96K, V97-E96K and T104A-E96K-to further understand the role of E96 in CGMMV pathogenesis. After inoculation in N. benthamiana, E96A showed delayed systemic symptoms, but the E96K and three double mutants exhibited typical symptoms of mosaic at seven days post-infection. Then, sap from CGMMV-infected N. benthamiana leaves was mechanically inoculated on watermelon plants. We confirmed that E96 affected CGMMV infection using double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA), reverse transcription-polymerase chain reaction (RT-PCR), and sequencing, which further confirmed the successful infection of the related mutants, and that E96K can compensate the effect of the V94, V97, and T104 mutations on virus infectivity. In addition, Northern blotting showed that the accumulation of viral RNA corroborated the severity of the symptoms.


Subject(s)
Cucurbitaceae/virology , Tobamovirus/genetics , Tobamovirus/pathogenicity , Viral Proteins/genetics , Amino Acid Substitution , Capsid Proteins/genetics , Citrullus/virology , Mutagenesis, Site-Directed , Plant Diseases/virology , RNA, Viral/analysis , Nicotiana/virology
17.
Planta ; 240(5): 1011-21, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24663441

ABSTRACT

Carotenoid content is the primary determinant of fruit color that affects nutritional value and appearance in tomato. Phytoene synthase (PSY) is the key regulatory enzyme in the carotenoid biosynthesis pathway. Absent function of PSY1 in tomato fruit results in yellow flesh phenotype. We, here, report that two different transcripts, a wild-type (Psy1) and a chimeric mRNA (Psy1/Unknown), exist in a yellow-fruited tomato accession PI 114490. Psy1/Unknown is generated by joining exons from two different genes, Psy1 and an unknown gene, transcribed using both complementary DNA strands. The Psy1 shows low expression in the fruit of PI 114490, while the expression of Psy1/Unknown in the fruit of PI 114490 shows the same pattern as Psy1 in red fruit. The PSY1/Unknown has a lower function than PSY1 in a bacterial expression system. Coincidence of one single-nucleotide polymorphism (SNP) in the fourth intron and one simple sequence repeat (SSR) with 19 AT repeats in the downstream sequence of Psy1 gene with Psy1/Unknown in a set of yellow-fruited tomato lines indicates that Psy1/Unknown might be caused by the SNP and/or SSR. One possible explanation of these observations is trans-splicing. Severely reduced Psy1 transcript caused by Psy1/Unknown results in low accumulation of carotenoid and yellow flesh in PI 114490.


Subject(s)
Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Pigmentation/genetics , Plant Proteins/genetics , RNA, Messenger/genetics , Solanum lycopersicum/genetics , Amino Acid Sequence , Base Sequence , Carotenoids/biosynthesis , Color , Escherichia coli/genetics , Exons/genetics , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Introns/genetics , Solanum lycopersicum/metabolism , Microsatellite Repeats/genetics , Molecular Sequence Data , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...