Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Neuromuscul Disord ; 42: 36-42, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39121631

ABSTRACT

Limb-girdle muscular dystrophy recessive 27 is associated with biallelic variants in JAG2, encoding the JAG2 notch ligand. Twenty-four affected individuals from multiple families have been described in two reports. We present two Australian families with three novel JAG2 missense variants: (c.1021G>T, p.(Gly341Cys)) homozygous in two siblings of Pakistani origin, and compound heterozygous variants (c.703T>C, p.(Trp235Arg); c.2350C>T, p.(Arg784Cys)) in a proband of European ancestry. Patients presented with childhood-onset limb-girdle-like myopathy with difficulty or inability walking. MRI revealed widespread torso and limb muscle involvement. Muscle pathology showed myopathic changes with fatty infiltration. Muscle RNA sequencing revealed significant downregulation of myogenesis genes PAX7, MYF5, and MEGF10 similar to previous JAG2-related muscular dystrophy cases or Jag2-knockdown cells. In absence of functional assays to characterise JAG2 variants, clinical, MRI and transcriptomic profiling collectively may help discern JAG2-related muscular dystrophy, diagnosis of which is essential for patients and families given the severity of disease and reoccurrence risk.

2.
Proc Natl Acad Sci U S A ; 121(28): e2401318121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968103

ABSTRACT

Mineral precipitation caused by fluid mixing presents complex control and predictability challenges in a variety of natural and engineering processes, including carbon mineralization, geothermal energy, and microfluidics. Precipitation dynamics, particularly under the influence of fluid flow, remain poorly understood. Combining microfluidic experiments and three-dimensional reactive transport simulations, we demonstrate that fluid inertia controls mineral precipitation and clogging at flow intersections, even in laminar flows. We observe distinct precipitation regimes as a function of Reynolds number (Re). At low Reynolds numbers (Re < 10), precipitates form a thin, dense layer along the mixing interface, which shuts precipitation off, while at high Reynolds numbers (Re > 50), strong three-dimensional flows significantly enhance precipitation over the entire intersection, resulting in rapid clogging. When injection rates from two inlets are uneven, flow symmetry-breaking leads to unexpected flow bifurcation phenomena, which result in enhanced concurrent precipitation in both downstream channels. Finally, we extend our findings to rough channel networks and demonstrate that the identified inertial effects on precipitation at the intersection scale are also present and even more dramatic at the network scale. This study sheds light on the fundamental mechanisms underlying mixing-induced mineral precipitation and provides a framework for designing and optimizing processes involving mineral precipitation.

3.
Muscle Nerve ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39072769

ABSTRACT

INTRODUCTION/AIMS: Heterogeneous nuclear ribonucleoprotein A1 is involved in nucleic acid homeostatic functions. The encoding gene HNRNPA1 has been associated with several neuromuscular disorders including an amyotrophic lateral sclerosis-like phenotype, distal hereditary motor neuropathy, multisystem proteinopathy, and various myopathies. We report two unrelated individuals with monoallelic stop loss variants affecting the same codon of HNRNPA1. METHODS: Two individuals with unsolved juvenile-onset myopathy were enrolled under approved institutional protocols. Phenotype data were collected and genetic analyses were performed, including whole-exome sequencing (WES). RESULTS: The two probands (MNOT002-01 and K1440-01) showed a similar onset of slowly progressive extremity and facial weakness in early adolescence. K1440-01 presented with facial weakness, winged scapula, elevated serum creatine kinase (CK) levels, and mild neck weakness. MNOT002-01 also exhibited elevated CK levels along with facial weakness, cardiomyopathy, respiratory dysfunction, pectus excavatum, a mildly rigid spine, and loss of ambulation. On quadriceps muscle biopsy, K1440-01 displayed rounded myofibers, mild variation in fiber diameter, and type 2 fiber hypertrophy, while MNOT002-01 displayed rimmed vacuoles. Monoallelic stop-loss variants in HNRNPA1 were identified for both probands: c.1119A>C p.*373Tyrext*6 (K1440-01) and c.1118A>C p.*373Serext*6 (MNOT002-01) affect the same codon and are both predicted to lead to the addition of six amino acids before termination at an alternative stop codon. DISCUSSION: Both stop-loss variants in our probands are likely pathogenic. Our findings contribute to the disease characterization of pathogenic variants in HNRNPA1. This gene should be screened in clinical diagnostic testing of unsolved cases of sporadic or dominant juvenile-onset myopathy.

4.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38903061

ABSTRACT

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern. The mechanism linking pathogenic variants in HMGCR with skeletal muscle dysfunction is unclear. We knocked down Hmgcr in mouse skeletal myoblasts, knocked down hmgcr in Drosophila, and expressed three pathogenic HMGCR variants (c.1327C>T, p.Arg443Trp; c.1522_1524delTCT, p.Ser508del; and c.1621G>A, p.Ala541Thr) in Hmgcr knockdown mouse myoblasts. Hmgcr deficiency was associated with decreased proliferation, increased apoptosis, and impaired myotube fusion. Transcriptome sequencing of Hmgcr knockdown versus control myoblasts revealed differential expression involving mitochondrial function, with corresponding differences in cellular oxygen consumption rates. Both ubiquitous and muscle-specific knockdown of hmgcr in Drosophila led to lethality. Overexpression of reference HMGCR cDNA rescued myotube fusion in knockdown cells, whereas overexpression of the pathogenic variants of HMGCR cDNA did not. These results suggest that the three HMGCR-related muscle diseases share disease mechanisms related to skeletal muscle development.

5.
Epilepsia ; 65(8): e148-e155, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837761

ABSTRACT

In response to the evolving treatment landscape for new-onset refractory status epilepticus (NORSE) and the publication of consensus recommendations in 2022, we conducted a comparative analysis of NORSE management over time. Seventy-seven patients were enrolled by 32 centers, from July 2016 to August 2023, in the NORSE/FIRES biorepository at Yale. Immunotherapy was administered to 88% of patients after a median of 3 days, with 52% receiving second-line immunotherapy after a median of 12 days (anakinra 29%, rituximab 25%, and tocilizumab 19%). There was an increase in the use of second-line immunotherapies (odds ratio [OR] = 1.4, 95% CI = 1.1-1.8) and ketogenic diet (OR = 1.8, 95% CI = 1.3-2.6) over time. Specifically, patients from 2022 to 2023 more frequently received second-line immunotherapy (69% vs 40%; OR = 3.3; 95% CI = 1.3-8.9)-particularly anakinra (50% vs 13%; OR = 6.5; 95% CI = 2.3-21.0), and the ketogenic diet (OR = 6.8; 95% CI = 2.5-20.1)-than those before 2022. Among the 27 patients who received anakinra and/or tocilizumab, earlier administration after status epilepticus onset correlated with a shorter duration of status epilepticus (ρ = .519, p = .005). Our findings indicate an evolution in NORSE management, emphasizing the increasing use of second-line immunotherapies and the ketogenic diet. Future research will clarify the impact of these treatments and their timing on patient outcomes.


Subject(s)
Diet, Ketogenic , Immunotherapy , Status Epilepticus , Humans , Status Epilepticus/therapy , Status Epilepticus/drug therapy , Male , Female , Diet, Ketogenic/methods , Immunotherapy/methods , Immunotherapy/trends , Adolescent , Adult , Drug Resistant Epilepsy/therapy , Drug Resistant Epilepsy/diet therapy , Child , Antibodies, Monoclonal, Humanized/therapeutic use , Middle Aged , Child, Preschool , Anticonvulsants/therapeutic use , Young Adult , Rituximab/therapeutic use , Disease Management
6.
Neurol Clin Pract ; 14(4): e200309, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38808024

ABSTRACT

Background and Objectives: Cockayne syndrome (CS) is an ultra-rare, autosomal recessive, premature aging disorder characterized by impaired growth, neurodevelopmental delays, neurodegeneration, polyneuropathy, and other multiorgan system complications. The anatomic aspects of CS neurodegeneration have long been known from postmortem examinations and MRI studies, but the clinical features of this neurodegeneration are not well characterized, especially at later stages of the disease. Methods: This was a retrospective observational study in which individuals with CS who survived beyond 18 years were ascertained at 3 centers in the United States, France, and the United Kingdom. Medical records were examined to determine the frequencies and features of the following neurologic complications: neurocognitive/neuropsychiatric decline (8 symptoms), tremors, neuropathy, seizures, and strokes. Results: Among 18 individuals who met inclusion criteria, all but one (94.4%) experienced at least one symptom of neurocognitive/neuropsychiatric decline, with most individuals experiencing at least half of those symptoms. Most participants experienced tremors and peripheral neuropathy, with a few experiencing seizures and strokes. For individuals with available data, 100.0% were reported to have gait ataxia and neuroimaging showed that 85.7% had generalized cerebral atrophy on MRI while 78.6% had white matter changes. Discussion: Symptoms of neurocognitive/neuropsychiatric decline are nearly universal in our cohort of adults with CS, suggesting that these individuals are at risk of developing neurocognitive/neuropsychiatric decline, with symptoms related to but not specific to dementia. Considering the prominent role of DNA repair defects in CS disease mechanisms and emerging evidence for increased DNA damage in neurodegenerative disease, impaired genome maintenance may be a shared pathway underlying multiple forms of neurocognitive/neuropsychiatric decline. Components of the DNA damage response mechanism may bear further study as potential therapeutic targets that could alleviate neurocognitive/neuropsychiatric symptoms in CS and other neurodegenerative disorders.

7.
Muscle Nerve ; 70(2): 273-278, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38783566

ABSTRACT

INTRODUCTION/AIMS: Early diagnosis of a chronic neuromuscular disease such as muscular dystrophy (MD) generally excludes an individual from active-duty military service. However, it is not known whether veterans are sometimes diagnosed with milder forms of MD at a later timepoint. We aimed to determine the prevalence of MD in a veterans health system. METHODS: We abstracted clinical and genetic test data on patients who received care for a diagnosis of MD at the North Florida/South Georgia Veterans Health System between 2008 and 2021. We then determined which of these individuals would meet criteria for a definite diagnosis of MD, based on electrodiagnostic testing, muscle biopsy, and genetic testing of the individual or an affected first degree relative. RESULTS: We identified 12 patients with definite MD and 36 with possible or probable MD. The definite cases included myotonic dystrophy type 1 (4), myotonic dystrophy type 2 (3), oculopharyngeal MD (2), Becker MD (1), distal MD (1), and facioscapulohumeral MD (1). At least five of the cases classified as definite developed symptoms after discharge from active duty. DISCUSSION: Clinicians who care for veterans should be knowledgeable about, and have access to, diagnostic testing and treatment options for MD. When conducting MD surveillance, it is important to include veterans health systems as a data source. Mild cases of MD and those of later onset appear to be compatible in some cases with successful completion of military service.


Subject(s)
Muscular Dystrophies , Veterans , Humans , Male , Middle Aged , Female , Adult , Muscular Dystrophies/diagnosis , Muscular Dystrophies/epidemiology , Muscular Dystrophies/genetics , Aged , Veterans Health , Prevalence
8.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38765987

ABSTRACT

Introduction: Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD. Methods: The ClinGen Muscular Dystrophies and Myopathies gene curation expert panel (MDM GCEP, formerly Limb Girdle Muscular Dystrophy GCEP) convened to evaluate the strength of evidence supporting gene-disease relationships (GDR) using the ClinGen gene-disease clinical validity framework to evaluate 31 genes implicated in LGMD. Results: The GDR was exclusively LGMD for 17 genes, whereas an additional 14 genes were related to a broader phenotype encompassing congenital weakness. Four genes (CAPN3, COL6A1, COL6A2, COL6A3) were split into two separate disease entities, based on each displaying both dominant and recessive inheritance patterns, resulting in curation of 35 GDRs. Of these, 30 (86%) were classified as Definitive, 4 (11%) as Moderate and 1 (3%) as Limited. Two genes, POMGNT1 and DAG1, though definitively related to myopathy, currently have insufficient evidence to support a relationship specifically with LGMD. Conclusions: The expert-reviewed assertions on the clinical validity of genes implicated in LGMDs form an invaluable resource for clinicians and molecular geneticists. We encourage the global neuromuscular community to publish case-level data that help clarify disputed or novel LGMD associations.

9.
Epilepsia ; 65(6): e87-e96, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625055

ABSTRACT

Febrile infection-related epilepsy syndrome (FIRES) is a subset of new onset refractory status epilepticus (NORSE) that involves a febrile infection prior to the onset of the refractory status epilepticus. It is unclear whether FIRES and non-FIRES NORSE are distinct conditions. Here, we compare 34 patients with FIRES to 30 patients with non-FIRES NORSE for demographics, clinical features, neuroimaging, and outcomes. Because patients with FIRES were younger than patients with non-FIRES NORSE (median = 28 vs. 48 years old, p = .048) and more likely cryptogenic (odds ratio = 6.89), we next ran a regression analysis using age or etiology as a covariate. Respiratory and gastrointestinal prodromes occurred more frequently in FIRES patients, but no difference was found for non-infection-related prodromes. Status epilepticus subtype, cerebrospinal fluid (CSF) and magnetic resonance imaging findings, and outcomes were similar. However, FIRES cases were more frequently cryptogenic; had higher CSF interleukin 6, CSF macrophage inflammatory protein-1 alpha (MIP-1a), and serum chemokine ligand 2 (CCL2) levels; and received more antiseizure medications and immunotherapy. After controlling for age or etiology, no differences were observed in presenting symptoms and signs or inflammatory biomarkers, suggesting that FIRES and non-FIRES NORSE are very similar conditions.


Subject(s)
Fever , Status Epilepticus , Humans , Status Epilepticus/etiology , Male , Female , Adult , Middle Aged , Fever/etiology , Fever/complications , Young Adult , Adolescent , Drug Resistant Epilepsy/etiology , Child , Seizures, Febrile/etiology , Electroencephalography , Aged , Magnetic Resonance Imaging , Epileptic Syndromes , Child, Preschool
10.
medRxiv ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38405995

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disorder that causes progressive degeneration of lower motor neurons and the subsequent loss of muscle function throughout the body. It is the second most common recessive disorder in individuals of European descent and is present in all populations. Accurate tools exist for diagnosing SMA from genome sequencing data. However, there are no publicly available tools for GRCh38-aligned data from panel or exome sequencing assays which continue to be used as first line tests for neuromuscular disorders. This deficiency creates a critical gap in our ability to diagnose SMA in large existing rare disease cohorts, as well as newly sequenced exome and panel datasets. We therefore developed and extensively validated a new tool - SMA Finder - that can diagnose SMA not only in genome, but also exome and panel sequencing samples aligned to GRCh37, GRCh38, or T2T-CHM13. It works by evaluating aligned reads that overlap the c.840 position of SMN1 and SMN2 in order to detect the most common molecular causes of SMA. We applied SMA Finder to 16,626 exomes and 3,911 genomes from heterogeneous rare disease cohorts sequenced at the Broad Institute Center for Mendelian Genomics as well as 1,157 exomes and 8,762 panel sequencing samples from Tartu University Hospital. SMA Finder correctly identified all 16 known SMA cases and reported nine novel diagnoses which have since been confirmed by clinical testing, with another four novel diagnoses undergoing validation. Notably, out of the 29 total SMA positive cases, 23 had an initial clinical diagnosis of muscular dystrophy, congenital myasthenic syndrome, or myopathy. This underscored the frequency with which SMA can be misdiagnosed as other neuromuscular disorders and confirmed the utility of using SMA Finder to reanalyze phenotypically diverse neuromuscular disease cohorts. Finally, we evaluated SMA Finder on 198,868 individuals that had both exome and genome sequencing data within the UK Biobank (UKBB) and found that SMA Finder's overall false positive rate was less than 1 / 200,000 exome samples, and its positive predictive value (PPV) was 97%. We also observed 100% concordance between UKBB exome and genome calls. This analysis showed that, even though it is located within a segmental duplication, the most common causal variant for SMA can be detected with comparable accuracy to monogenic disease variants in non-repetitive regions. Additionally, the high PPV demonstrated by SMA Finder, the existence of treatment options for SMA in which early diagnosis is imperative for therapeutic benefit, as well as widespread availability of clinical confirmatory testing for SMA, warrants the addition of SMN1 to the ACMG list of genes with reportable secondary findings after genome and exome sequencing.

SELECTION OF CITATIONS
SEARCH DETAIL