Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
Hum Genomics ; 18(1): 93, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218908

ABSTRACT

BACKGROUND: Polygenic risk scores (PRS) derived from European individuals have reduced portability across global populations, limiting their clinical implementation at worldwide scale. Here, we investigate the performance of a wide range of PRS models across four ancestry groups (Africans, Europeans, East Asians, and South Asians) for 14 conditions of high-medical interest. METHODS: To select the best-performing model per trait, we first compared PRS performances for publicly available scores, and constructed new models using different methods (LDpred2, PRS-CSx and SNPnet). We used 285 K European individuals from the UK Biobank (UKBB) for training and 18 K, including diverse ancestries, for testing. We then evaluated PRS portability for the best models in Europeans and compared their accuracies with respect to the best PRS per ancestry. Finally, we validated the selected PRS models using an independent set of 8,417 individuals from Biobank of the Americas-Genomelink (BbofA-GL); and performed a PRS-Phewas. RESULTS: We confirmed a decay in PRS performances relative to Europeans when the evaluation was conducted using the best-PRS model for Europeans (51.3% for South Asians, 46.6% for East Asians and 39.4% for Africans). We observed an improvement in the PRS performances when specifically selecting ancestry specific PRS models (phenotype variance increase: 1.62 for Africans, 1.40 for South Asians and 0.96 for East Asians). Additionally, when we selected the optimal model conditional on ancestry for CAD, HDL-C and LDL-C, hypertension, hypothyroidism and T2D, PRS performance for studied populations was more comparable to what was observed in Europeans. Finally, we were able to independently validate tested models for Europeans, and conducted a PRS-Phewas, identifying cross-trait interplay between cardiometabolic conditions, and between immune-mediated components. CONCLUSION: Our work comprehensively evaluated PRS accuracy across a wide range of phenotypes, reducing the uncertainty with respect to which PRS model to choose and in which ancestry group. This evaluation has let us identify specific conditions where implementing risk-prioritization strategies could have practical utility across diverse ancestral groups, contributing to democratizing the implementation of PRS.


Subject(s)
Genetic Predisposition to Disease , Genetic Risk Score , Female , Humans , Asian People/genetics , Genome-Wide Association Study , Models, Genetic , Polymorphism, Single Nucleotide , White People/genetics , Black People/genetics
2.
JCI Insight ; 9(17)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088281

ABSTRACT

Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.


Subject(s)
Anemia, Diamond-Blackfan , Ribosomal Proteins , Zebrafish , Anemia, Diamond-Blackfan/genetics , Ribosomal Proteins/genetics , Humans , Zebrafish/genetics , Animals , Male , Female , Pedigree , Haploinsufficiency
3.
Hum Genomics ; 16(1): 37, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076307

ABSTRACT

INTRODUCTION: A major challenge to enabling precision health at a global scale is the bias between those who enroll in state sponsored genomic research and those suffering from chronic disease. More than 30 million people have been genotyped by direct-to-consumer (DTC) companies such as 23andMe, Ancestry DNA, and MyHeritage, providing a potential mechanism for democratizing access to medical interventions and thus catalyzing improvements in patient outcomes as the cost of data acquisition drops. However, much of these data are sequestered in the initial provider network, without the ability for the scientific community to either access or validate. Here, we present a novel geno-pheno platform that integrates heterogeneous data sources and applies learnings to common chronic disease conditions including Type 2 diabetes (T2D) and hypertension. METHODS: We collected genotyped data from a novel DTC platform where participants upload their genotype data files and were invited to answer general health questionnaires regarding cardiometabolic traits over a period of 6 months. Quality control, imputation, and genome-wide association studies were performed on this dataset, and polygenic risk scores were built in a case-control setting using the BASIL algorithm. RESULTS: We collected data on N = 4,550 (389 cases / 4,161 controls) who reported being affected or previously affected for T2D and N = 4,528 (1,027 cases / 3,501 controls) for hypertension. We identified 164 out of 272 variants showing identical effect direction to previously reported genome-significant findings in Europeans. Performance metric of the PRS models was AUC = 0.68, which is comparable to previously published PRS models obtained with larger datasets including clinical biomarkers. DISCUSSION: DTC platforms have the potential of inverting research models of genome sequencing and phenotypic data acquisition. Quality control (QC) mechanisms proved to successfully enable traditional GWAS and PRS analyses. The direct participation of individuals has shown the potential to generate rich datasets enabling the creation of PRS cardiometabolic models. More importantly, federated learning of PRS from reuse of DTC data provides a mechanism for scaling precision health care delivery beyond the small number of countries who can afford to finance these efforts directly. CONCLUSIONS: The genetics of T2D and hypertension have been studied extensively in controlled datasets, and various polygenic risk scores (PRS) have been developed. We developed predictive tools for both phenotypes trained with heterogeneous genotypic and phenotypic data generated outside of the clinical environment and show that our methods can recapitulate prior findings with fidelity. From these observations, we conclude that it is possible to leverage DTC genetic repositories to identify individuals at risk of debilitating diseases based on their unique genetic landscape so that informed, timely clinical interventions can be incorporated.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hypertension , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Hypertension/genetics , Multifactorial Inheritance/genetics , Phenotype , Precision Medicine , Risk Factors
4.
Hormones (Athens) ; 21(4): 525-536, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36044182

ABSTRACT

PURPOSE: Although ACTH is considered a secondary regulator of aldosterone production, patients with apparent essential hypertension have been treated with mineralocorticoid receptor antagonists (MRAs). In this study, we aimed to identify potentially damaging variants that might be implicated in the phenotype of a well-characterized cohort of 21 hypertensive patients without PA but with stress-induced aldosterone hypersecretion. The patients' blood pressure was normalized though MRA administration. METHODS: Genetic screening was performed through whole-exome sequencing (WES), and variants in PA-associated or in ion-channels of aldosterone-regulating genes were prioritized. Variants with population frequency < 0.01, predicted to alter protein structure and classified as likely pathogenic by in silico tools, were retained. RESULTS: Qualifying variants were identified in nine of the 21 patients screened. Seven patients were carriers of six potentially damaging variants in six genes associated with PA (KCNK9, KCNK5, ATP13A3, SLC26A2, CACNA1H, and CACNA1D). A novel variant in the KCNK9 gene (p.V221M) is reported. Our analysis revealed two variants in two novel susceptibility genes for aldosterone hypersecretion, namely, KCNK16 (p.P255H) and CACNA2D3 (p.V557I). CONCLUSION: WES revealed potentially damaging germline variants in genes participating in aldosterone synthesis/regulating pathways in 9/21 patients of our cohort. The variants identified might play a role in aldosterone hypersecretion under conditions of stress. The potential pathogenicity of these variants should be examined in future functional studies.


Subject(s)
Hyperaldosteronism , Hypertension , Humans , Aldosterone/metabolism , Genetic Testing , Hyperaldosteronism/genetics , Hyperaldosteronism/diagnosis , Hypertension/drug therapy , Hypertension/genetics , Hypertension/complications , Mineralocorticoid Receptor Antagonists
5.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35917817

ABSTRACT

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Subject(s)
DNA Copy Number Variations , Genome, Human , DNA Copy Number Variations/genetics , Gene Dosage , Haploinsufficiency/genetics , Humans
6.
Kidney Int ; 101(3): 473-484, 2022 03.
Article in English | MEDLINE | ID: mdl-34780871

ABSTRACT

Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.


Subject(s)
Urinary Tract , Urogenital Abnormalities , DNA Copy Number Variations , Genomics , Humans , Kidney/abnormalities , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/genetics
7.
Hum Genet ; 140(12): 1733-1751, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34647195

ABSTRACT

Mitochondrial disorders are collectively common, genetically heterogeneous disorders in both pediatric and adult populations. They are caused by molecular defects in oxidative phosphorylation, failure of essential bioenergetic supply to mitochondria, and apoptosis. Here, we present three affected individuals from a consanguineous family of Pakistani origin with variable seizures and intellectual disability. Both females display primary ovarian insufficiency (POI), while the male shows abnormal sex hormone levels. We performed whole exome sequencing and identified a recessive missense variant c.694C > T, p.Arg232Cys in TFAM that segregates with disease. TFAM (mitochondrial transcription factor A) is a component of the mitochondrial replisome machinery that maintains mtDNA transcription and replication. In primary dermal fibroblasts, we show depletion of mtDNA and significantly altered mitochondrial function and morphology. Moreover, we observed reduced nucleoid numbers with significant changes in nucleoid size or shape in fibroblasts from an affected individual compared to controls. We also investigated the effect of tfam impairment in zebrafish; homozygous tfam mutants carrying an in-frame c.141_149 deletion recapitulate the mtDNA depletion and ovarian dysgenesis phenotypes observed in affected humans. Together, our genetic and functional data confirm that TFAM plays a pivotal role in gonad development and expands the repertoire of mitochondrial disease phenotypes.


Subject(s)
DNA, Mitochondrial , DNA-Binding Proteins/genetics , Genes, Recessive , Hearing Loss/genetics , Intellectual Disability/genetics , Mitochondrial Proteins/genetics , Primary Ovarian Insufficiency/genetics , Seizures/genetics , Transcription Factors/genetics , Animals , Cells, Cultured , Female , Gonads/embryology , Humans , Male , Pedigree , Zebrafish/genetics
8.
Curr Opin Genet Dev ; 68: 79-87, 2021 06.
Article in English | MEDLINE | ID: mdl-33812298

ABSTRACT

Genetic architecture predisposes regions of the human genome to copy-number variants, which confer substantial disease risk, most prominently towards neurodevelopmental disorders. These variants typically contain multiple genes and are often associated with extensive pleiotropy and variable phenotypic expressivity. Despite the expansion of the fidelity of CNV detection, and the study of such lesions at the population level, understanding causal mechanisms for CNV phenotypes will require biological testing of constituent genes and their interactions. In this regard, model systems amenable to high-throughput phenotypic analysis of dosage-sensitive genes (and combinations thereof) are beginning to offer improved granularity of CNV-driven pathology. Here, we review the utility of Drosophila and zebrafish models for pathogenic CNV regions, highlight the advances made in discovery of single gene drivers and genetic interactions that determine specific CNV phenotypes, and argue for their validity in dissecting conserved developmental mechanisms associated with CNVs.


Subject(s)
DNA Copy Number Variations , Drosophila/genetics , Genetic Predisposition to Disease , Neurodevelopmental Disorders/genetics , Zebrafish/genetics , Animals , Disease Models, Animal , Gene Dosage , Genetic Association Studies , High-Throughput Screening Assays , Humans
9.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33811806

ABSTRACT

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Subject(s)
Autism Spectrum Disorder/genetics , Haploinsufficiency/genetics , Histone Deacetylases/metabolism , Intellectual Disability/genetics , Repressor Proteins/genetics , Acetylation , Adolescent , Animals , Child , Child, Preschool , DNA Copy Number Variations/genetics , Female , Histones/chemistry , Histones/metabolism , Humans , Infant , Larva/genetics , Magnetic Resonance Imaging , Male , Middle Aged , Models, Molecular , Mutation , Repressor Proteins/deficiency , Repressor Proteins/metabolism , Syndrome , Young Adult , Zebrafish/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
10.
Nat Commun ; 12(1): 1118, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602914

ABSTRACT

Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.


Subject(s)
Acoustics , Rotation , Zebrafish/anatomy & histology , Animals , Ethanol/pharmacology , Imaging, Three-Dimensional , Larva/anatomy & histology , Larva/drug effects , Liver/anatomy & histology , Liver/drug effects , Organ Size/drug effects , Phenotype , Transducers
11.
Clin Genet ; 99(2): 318-324, 2021 02.
Article in English | MEDLINE | ID: mdl-33169370

ABSTRACT

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinitis pigmentosa, obesity, polydactyly, cognitive impairment and renal failure. Pathogenic variants in 24 genes account for the molecular basis of >80% of cases. Toward saturated discovery of the mutational basis of the disorder, we carefully explored our cohorts and identified a hominid-specific SINE-R/VNTR/Alu type F (SVA-F) insertion in exon 13 of BBS1 in eight families. In six families, the repeat insertion was found in trans with c.1169 T > G, p.Met390Arg and in two families the insertion was found in addition to other recessive BBS loci. Whole genome sequencing, de novo assembly and SNP array analysis were performed to characterize the genomic event. This insertion is extremely rare in the general population (found in 8 alleles of 8 BBS cases but not in >10 800 control individuals from gnomAD-SV) and due to a founder effect. Its 2435 bp sequence contains hallmarks of LINE1 mediated retrotransposition. Functional studies with patient-derived cell lines confirmed that the BBS1 SVA-F is deleterious as evidenced by a significant depletion of both mRNA and protein levels. Such findings highlight the importance of dedicated bioinformatics pipelines to identify all types of variation.


Subject(s)
Bardet-Biedl Syndrome/genetics , Microtubule-Associated Proteins/genetics , Retroelements , Cohort Studies , Female , Founder Effect , Gene Frequency , Humans , Male , Mutagenesis, Insertional , Pedigree , Whole Genome Sequencing
12.
Nat Commun ; 11(1): 5903, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33214552

ABSTRACT

The neuronal primary cilium and centriolar satellites have functions in neurogenesis, but little is known about their roles in the postnatal brain. We show that ablation of pericentriolar material 1 in the mouse leads to progressive ciliary, anatomical, psychomotor, and cognitive abnormalities. RNAseq reveals changes in amine- and G-protein coupled receptor pathways. The physiological relevance of this phenotype is supported by decreased available dopamine D2 receptor (D2R) levels and the failure of antipsychotic drugs to rescue adult behavioral defects. Immunoprecipitations show an association with Pcm1 and D2Rs. Finally, we sequence PCM1 in two human cohorts with severe schizophrenia. Systematic modeling of all discovered rare alleles by zebrafish in vivo complementation reveals an enrichment for pathogenic alleles. Our data emphasize a role for the pericentriolar material in the postnatal brain, with progressive degenerative ciliary and behavioral phenotypes; and they support a contributory role for PCM1 in some individuals diagnosed with schizophrenia.


Subject(s)
Cell Cycle Proteins/physiology , Cilia/pathology , Genetic Predisposition to Disease/genetics , Schizophrenia/genetics , Adult , Aged , Alleles , Amines/metabolism , Animals , Antipsychotic Agents/therapeutic use , Brain/metabolism , Brain/pathology , Brain/physiopathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cilia/metabolism , Drug Resistance/genetics , Humans , Mice , Mice, Knockout , Middle Aged , Mutation , Phenotype , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Schizophrenia/drug therapy , Schizophrenia/pathology , Schizophrenia/physiopathology , Signal Transduction , Young Adult , Zebrafish
13.
Hum Mutat ; 41(12): 2179-2194, 2020 12.
Article in English | MEDLINE | ID: mdl-33131181

ABSTRACT

Ciliopathies are clinically and genetically heterogeneous diseases. We studied three patients from two independent families presenting with features of Joubert syndrome: abnormal breathing pattern during infancy, developmental delay/intellectual disability, cerebellar ataxia, molar tooth sign on magnetic resonance imaging scans, and polydactyly. We identified biallelic loss-of-function (LOF) variants in CBY1, segregating with the clinical features of Joubert syndrome in the families. CBY1 localizes to the distal end of the mother centriole, contributing to the formation and function of cilia. In accordance with the clinical and mutational findings in the affected individuals, we demonstrated that depletion of Cby1 in zebrafish causes ciliopathy-related phenotypes. Levels of CBY1 transcript were found reduced in the patients compared with controls, suggesting degradation of the mutated transcript through nonsense-mediated messenger RNA decay. Accordingly, we could detect CBY1 protein in fibroblasts from controls, but not from patients by immunofluorescence. Furthermore, we observed reduced ability to ciliate, increased ciliary length, and reduced levels of the ciliary proteins AHI1 and ARL13B in patient fibroblasts. Our data show that CBY1 LOF-variants cause a ciliopathy with features of Joubert syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Cerebellum/abnormalities , Ciliopathies/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Mutation/genetics , Nuclear Proteins/genetics , Retina/abnormalities , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/pathology , Adolescent , Animals , Cerebellum/diagnostic imaging , Cerebellum/pathology , Child , Child, Preschool , Cilia/metabolism , Cilia/pathology , Ciliopathies/diagnostic imaging , Ciliopathies/pathology , Eye Abnormalities/diagnostic imaging , Eye Abnormalities/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Homozygote , Humans , Infant , Infant, Newborn , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/pathology , Magnetic Resonance Imaging , Male , Pedigree , Phenotype , Retina/diagnostic imaging , Retina/pathology , Smoothened Receptor/metabolism , Young Adult , Zebrafish/genetics
14.
Nat Commun ; 11(1): 5520, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139725

ABSTRACT

Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45-/- mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module.


Subject(s)
Adenine Nucleotides/metabolism , Asthenozoospermia/genetics , Cytoskeletal Proteins/deficiency , Situs Inversus/genetics , Adolescent , Adult , Animals , Asthenozoospermia/pathology , Axoneme/ultrastructure , CRISPR-Cas Systems/genetics , Cilia/metabolism , Cilia/ultrastructure , Cytoskeletal Proteins/genetics , DNA Mutational Analysis , Disease Models, Animal , Epididymis/pathology , Female , Flagella/metabolism , Flagella/ultrastructure , Humans , Loss of Function Mutation , Male , Mice , Mice, Knockout , Middle Aged , Planarians/cytology , Planarians/genetics , Planarians/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/pathology , Situs Inversus/diagnostic imaging , Situs Inversus/pathology , Sperm Motility/genetics , Tomography, X-Ray Computed , Exome Sequencing
15.
Nat Genet ; 52(11): 1145-1150, 2020 11.
Article in English | MEDLINE | ID: mdl-33046855

ABSTRACT

The influence of genetic background on driver mutations is well established; however, the mechanisms by which the background interacts with Mendelian loci remain unclear. We performed a systematic secondary-variant burden analysis of two independent cohorts of patients with Bardet-Biedl syndrome (BBS) with known recessive biallelic pathogenic mutations in one of 17 BBS genes for each individual. We observed a significant enrichment of trans-acting rare nonsynonymous secondary variants in patients with BBS compared with either population controls or a cohort of individuals with a non-BBS diagnosis and recessive variants in the same gene set. Strikingly, we found a significant over-representation of secondary alleles in chaperonin-encoding genes-a finding corroborated by the observation of epistatic interactions involving this complex in vivo. These data indicate a complex genetic architecture for BBS that informs the biological properties of disease modules and presents a model for secondary-variant burden analysis in recessive disorders.


Subject(s)
Bardet-Biedl Syndrome/genetics , Genetic Variation , Alleles , Cohort Studies , Exome , Humans
16.
PLoS Genet ; 16(9): e1009010, 2020 09.
Article in English | MEDLINE | ID: mdl-32956375

ABSTRACT

Essential tremor (ET) is the most common adult-onset movement disorder. In the present study, we performed whole exome sequencing of a large ET-affected family (10 affected and 6 un-affected family members) and identified a TUB p.V431I variant (rs75594955) segregating in a manner consistent with autosomal-dominant inheritance. Subsequent targeted re-sequencing of TUB in 820 unrelated individuals with sporadic ET and 630 controls revealed significant enrichment of rare nonsynonymous TUB variants (e.g. rs75594955: p.V431I, rs1241709665: p.Ile20Phe, rs55648406: p.Arg49Gln) in the ET cohort (SKAT-O test p-value = 6.20e-08). TUB encodes a transcription factor predominantly expressed in neuronal cells and has been previously implicated in obesity. ChIP-seq analyses of the TUB transcription factor across different regions of the mouse brain revealed that TUB regulates the pathways responsible for neurotransmitter production as well thyroid hormone signaling. Together, these results support the association of rare variants in TUB with ET.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Essential Tremor/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Aged, 80 and over , Animals , Chromatin Immunoprecipitation Sequencing/methods , Cohort Studies , Exome/genetics , Family , Female , Humans , Male , Mice, Inbred C57BL , Middle Aged , Pedigree , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics , Exome Sequencing/methods
17.
Nat Commun ; 11(1): 3698, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703943

ABSTRACT

Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3' alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development.


Subject(s)
DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Mutation/genetics , RNA-Binding Proteins/genetics , Spliceosomes/metabolism , Zebrafish Proteins/genetics , Adult , Animals , Cell Nucleus/metabolism , Child , Child, Preschool , DNA-Binding Proteins/metabolism , Family , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Mutation, Missense/genetics , NIH 3T3 Cells , Pedigree , Phenotype , Protein Transport , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Nuclear/genetics , RNA-Binding Proteins/metabolism , Syndrome , Zebrafish/genetics , Zebrafish Proteins/metabolism
18.
Hum Mol Genet ; 29(14): 2435-2450, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32620954

ABSTRACT

Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Gonadotropin-Releasing Hormone/genetics , Kallmann Syndrome/genetics , Ubiquitin-Protein Ligases/genetics , Zebrafish Proteins/genetics , Adult , Aged , Animals , Disease Models, Animal , Female , Genes, Dominant/genetics , Gonadotropin-Releasing Hormone/deficiency , Haploinsufficiency/genetics , Humans , Kallmann Syndrome/pathology , Male , Middle Aged , Mutation/genetics , Neurons/metabolism , Neurons/pathology , Phenotype , Zebrafish/genetics
19.
Nat Neurosci ; 23(9): 1102-1110, 2020 09.
Article in English | MEDLINE | ID: mdl-32661395

ABSTRACT

Cerebellar dysfunction has been demonstrated in autism spectrum disorders (ASDs); however, the circuits underlying cerebellar contributions to ASD-relevant behaviors remain unknown. In this study, we demonstrated functional connectivity between the cerebellum and the medial prefrontal cortex (mPFC) in mice; showed that the mPFC mediates cerebellum-regulated social and repetitive/inflexible behaviors; and showed disruptions in connectivity between these regions in multiple mouse models of ASD-linked genes and in individuals with ASD. We delineated a circuit from cerebellar cortical areas Right crus 1 (Rcrus1) and posterior vermis through the cerebellar nuclei and ventromedial thalamus and culminating in the mPFC. Modulation of this circuit induced social deficits and repetitive behaviors, whereas activation of Purkinje cells (PCs) in Rcrus1 and posterior vermis improved social preference impairments and repetitive/inflexible behaviors, respectively, in male PC-Tsc1 mutant mice. These data raise the possibility that these circuits might provide neuromodulatory targets for the treatment of ASD.


Subject(s)
Autism Spectrum Disorder/physiopathology , Cerebellum/physiopathology , Neural Pathways/physiopathology , Prefrontal Cortex/physiopathology , Animals , Male , Mice , Mice, Mutant Strains
20.
Am J Hum Genet ; 106(6): 893-904, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32386558

ABSTRACT

Kinesin-2 enables ciliary assembly and maintenance as an anterograde intraflagellar transport (IFT) motor. Molecular motor activity is driven by a heterotrimeric complex comprised of KIF3A and KIF3B or KIF3C plus one non-motor subunit, KIFAP3. Using exome sequencing, we identified heterozygous KIF3B variants in two unrelated families with hallmark ciliopathy phenotypes. In the first family, the proband presents with hepatic fibrosis, retinitis pigmentosa, and postaxial polydactyly; he harbors a de novo c.748G>C (p.Glu250Gln) variant affecting the kinesin motor domain encoded by KIF3B. The second family is a six-generation pedigree affected predominantly by retinitis pigmentosa. Affected individuals carry a heterozygous c.1568T>C (p.Leu523Pro) KIF3B variant segregating in an autosomal-dominant pattern. We observed a significant increase in primary cilia length in vitro in the context of either of the two mutations while variant KIF3B proteins retained stability indistinguishable from wild type. Furthermore, we tested the effects of KIF3B mutant mRNA expression in the developing zebrafish retina. In the presence of either missense variant, rhodopsin was sequestered to the photoreceptor rod inner segment layer with a concomitant increase in photoreceptor cilia length. Notably, impaired rhodopsin trafficking is also characteristic of recessive KIF3B models as exemplified by an early-onset, autosomal-recessive, progressive retinal degeneration in Bengal cats; we identified a c.1000G>A (p.Ala334Thr) KIF3B variant by genome-wide association study and whole-genome sequencing. Together, our genetic, cell-based, and in vivo modeling data delineate an autosomal-dominant syndromic retinal ciliopathy in humans and suggest that multiple KIF3B pathomechanisms can impair kinesin-driven ciliary transport in the photoreceptor.


Subject(s)
Ciliopathies/genetics , Ciliopathies/pathology , Genes, Dominant/genetics , Kinesins/genetics , Mutation , Retina/pathology , Amino Acid Sequence , Animals , Cats , Child, Preschool , Cilia/pathology , Female , Genome-Wide Association Study , Heterozygote , Humans , Kinesins/chemistry , Kinesins/metabolism , Larva , Male , Middle Aged , Pedigree , Phenotype , Photoreceptor Cells/metabolism , Retina/cytology , Retina/growth & development , Retina/metabolism , Rhodopsin/metabolism , Young Adult , Zebrafish/genetics , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL