Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Diagnostics (Basel) ; 14(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893633

ABSTRACT

In April 2020, the Aboriginal and Torres Strait Islander COVID-19 Point-of-Care (POC) Testing Program was initiated to improve access to rapid molecular-based SARS-CoV-2 detection in First Nations communities. At capacity, the program reached 105 health services across Australia. An external review estimated the program contributed to averting between 23,000 and 122,000 COVID-19 infections within 40 days of the first infection in a remote community, equating to cost savings of between AU$337 million and AU$1.8 billion. Essential to the quality management of this program, a customised External Quality Assessment (EQA) program was developed with the Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP). From July 2020 to May 2022, SARS-CoV-2 EQA participation ranged from 93 to 100%. Overall concordance of valid EQA results was high (98%), with improved performance following the first survey. These results are consistent with those reported by 12 Australian and 4 New Zealand laboratories for three SARS-CoV-2 RNA EQA surveys in March 2020, demonstrating that SARS-CoV-2 RNA POC testing in primary care settings can be performed to an equivalent laboratory analytical standard. More broadly, this study highlights the value of quality management practices in real-world testing environments and the benefits of ongoing EQA program participation.

2.
Pathology ; 54(5): 615-622, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35778290

ABSTRACT

Extensive studies and analyses into the molecular features of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2) have enhanced the surveillance and investigation of its clusters and transmission worldwide. The whole genome sequencing (WGS) approach is crucial in identifying the source of infection and transmission routes by monitoring the emergence of variants over time and through communities. Varying SARS-CoV-2 genomics capacity and capability levels have been established in public health laboratories across different Australian states and territories. Therefore, laboratories performing SARS-CoV-2 WGS for public health purposes are recommended to participate in an external proficiency testing program (PTP). This study describes the development of a SARS-CoV-2 WGS PTP. The PTP assessed the performance of laboratories while providing valuable insight into the current state of SARS-CoV-2 genomics in public health across Australia. Part 1 of the PTP contained eight simulated SARS-CoV-2 positive and negative specimens to assess laboratories' wet and dry laboratory capacity. Part 2 involved the analysis of a genomic dataset that consisted of a multi-FASTA file of 70 consensus genomes of SARS-CoV-2. Participating laboratories were required to (1) submit raw data for independent bioinformatics analysis, (2) analyse the data with their processes, and (3) answer relevant questions about the data. The performance of the laboratories was commendable, despite some variation in the reported results due to the different sequencing and bioinformatics approaches used by laboratories. The overall outcome is positive and demonstrates the critical role of the PTP in supporting the implementation and validation of SARS-CoV-2 WGS processes. The data derived from this PTP will contribute to the development of SARS-CoV-2 bioinformatic quality control (QC) and performance benchmarking for accreditation.


Subject(s)
COVID-19 , SARS-CoV-2 , Australia , COVID-19/diagnosis , Humans , Laboratory Proficiency Testing , SARS-CoV-2/genetics , Whole Genome Sequencing/methods
3.
Pathology ; 54(4): 472-478, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35440366

ABSTRACT

Diagnostic testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone significant changes over the duration of the pandemic. In early 2020, SARS-CoV-2 specific nucleic acid testing (NAT) protocols were predominantly in-house assays developed based on protocols published in peer reviewed journals. As the pandemic has progressed, there has been an increase in the choice of testing platforms. A proficiency testing program for the detection of SARS-CoV-2 by NAT was provided to assist laboratories in assessing and improving test capabilities in the early stages of the pandemic. This was vital in quality assuring initial in-house assays, later commercially produced assays, and informing the public health response. The Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP) offered three rounds of proficiency testing for SARS-CoV-2 to Australian and New Zealand public and private laboratories in March, May, and November 2020. Each round included a panel of five specimens, consisting of positive (low, medium or high viral loads), inconclusive (technical specimen of selected SARS-CoV-2 specific genes) and negative specimens. Results were received for round 1 from 16, round 2 from 97 and round 3 from 101 participating laboratories. Improvement in the accuracy over time was shown, with the concordance of results in round 1 being 75.0%, in round 2 above 95.0% for all samples except one, and for round 3 above 95.0%. Overall, participants demonstrated high capabilities in detecting SARS-CoV-2, even in samples of low viral load, indicating excellent testing accuracy and therefore providing confidence in Australian and New Zealand public and private laboratories test results.


Subject(s)
COVID-19 , SARS-CoV-2 , Australia , COVID-19/diagnosis , Humans , Laboratories , Public Health , RNA, Viral , SARS-CoV-2/genetics
4.
Parasitology ; 148(10): 1125-1136, 2021 09.
Article in English | MEDLINE | ID: mdl-33843511

ABSTRACT

Previously, it was suggested that haemadipsid leeches represent an important vector of trypanosomes amongst native animals in Australia. Consequently, Chtonobdella bilineata leeches were investigated for the presence of trypanosome species by polymerase chain reaction (PCR), DNA sequencing and in vitro isolation. Phylogenetic analysis ensued to further define the populations present. PCR targeting the 28S rDNA demonstrated that over 95% of C. bilineata contained trypanosomes; diversity profiling by deep amplicon sequencing of 18S rDNA indicated the presence of four different clusters related to the Trypanosoma (Megatrypanum) theileri. Novy­MacNeal­Nicolle slopes with liquid overlay were used to isolate trypanosomes into culture that proved similar in morphology to Trypanosoma cyclops in that they contained a large numbers of acidocalcisomes. Phylogeny of 18S rDNA/GAPDH/ND5 DNA sequences from primary cultures and subclones showed the trypanosomes were monophyletic, with T. cyclops as a sister group. Blood-meal analysis of leeches showed that leeches primarily contained blood from swamp wallaby (Wallabia bicolour), human (Homo sapiens) or horse (Equus sp.). The leech C. bilineata is a host for at least five lineages of Trypanosoma sp. and these are monophyletic with T. cyclops; we propose Trypanosoma cyclops australiensis as a subspecies of T. cyclops based on genetic similarity and biogeography considerations.


Subject(s)
Host-Parasite Interactions , Leeches/parasitology , Trypanosoma/isolation & purification , Animals , DNA, Protozoan/analysis , DNA, Ribosomal/analysis , New South Wales , Polymerase Chain Reaction
5.
FEMS Microbiol Rev ; 45(5)2021 09 08.
Article in English | MEDLINE | ID: mdl-33724378

ABSTRACT

To understand the intricacies of microorganisms at the molecular level requires making sense of copious volumes of data such that it may now be humanly impossible to detect insightful data patterns without an artificial intelligence application called machine learning. Applying machine learning to address biological problems is expected to grow at an unprecedented rate, yet it is perceived by the uninitiated as a mysterious and daunting entity entrusted to the domain of mathematicians and computer scientists. The aim of this review is to identify key points required to start the journey of becoming an effective machine learning practitioner. These key points are further reinforced with an evaluation of how machine learning has been applied so far in a broad scope of real-life microbiology examples. This includes predicting drug targets or vaccine candidates, diagnosing microorganisms causing infectious diseases, classifying drug resistance against antimicrobial medicines, predicting disease outbreaks and exploring microbial interactions. Our hope is to inspire microbiologists and other related researchers to join the emerging machine learning revolution.


Subject(s)
Artificial Intelligence , Machine Learning
6.
Pathology ; 52(7): 790-795, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33070960

ABSTRACT

The current public health emergency surrounding the COVID-19 pandemic, that is the illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in thousands of cases in Australia since 25 January 2020 when the first case was diagnosed. This emerging virus presents particular hazards to researchers and laboratory staff in a clinical setting, highlighted by rapid and widespread global transmission. Based on the epidemiological and clinical data that have become available in mid-2020, we propose the interim classification of SARS-CoV-2 as a Risk Group 3 organism is reasonable, and discuss establishing Biosafety Level 3 (BSL-3) regulations accordingly. Despite its global spread, the reported mortality rate of SARS-CoV-2 ranging from 0.13% to 6.22% is considerably less than that of other Risk Group 4 agents including Ebola and Marburg viruses with fatality rates as high as 90%. In addition, studies have demonstrated that approximately 86% of patients presenting with severe courses of the disease are aged 70 years or above, with the presence of comorbid conditions such as cardiovascular and respiratory system diseases in the majority of all fatal cases. In contrary to recent discussions surrounding the protective and administrative measures needed in a laboratory, the emerging evidence surrounding mortality rate, distinct demographics of severe infections, and the presence of underlying diseases does not justify the categorisation of SARS-CoV-2 as a Risk Group 4 organism. This article summarises biosafety precautions, control measures and appropriate physical containment facilities required to minimise the risk of laboratory-acquired infections with SARS-CoV-2.


Subject(s)
COVID-19 , Containment of Biohazards/methods , Laboratories , Occupational Exposure/prevention & control , SARS-CoV-2/classification , Australia , Humans , Occupational Health
7.
Int J Parasitol ; 50(6-7): 449-460, 2020 06.
Article in English | MEDLINE | ID: mdl-32333942

ABSTRACT

The Trypanosomatid family are a diverse and widespread group of protozoan parasites that belong to the higher order class Kinetoplastida. Containing predominantly monoxenous species (i.e. those having only a single host) that are confined to invertebrate hosts, this class is primarily known for its pathogenic dixenous species (i.e. those that have two hosts), serving as the aetiological agents of the important neglected tropical diseases including leishmaniasis, American trypanosomiasis (Chagas disease) and human African trypanosomiasis. Over the past few decades, a multitude of studies have investigated the diversity, classification and evolutionary history of the trypanosomatid family using different approaches and molecular targets. The mitochondrial-like DNA of the trypanosomatid parasites, also known as the kinetoplast, has emerged as a unique taxonomic and diagnostic target for exploring the evolution of this diverse group of parasitic eukaryotes. This review discusses recent advancements and important developments that have made a significant impact in the field of trypanosomatid systematics and diagnostics in recent years.


Subject(s)
DNA, Kinetoplast/genetics , Genome, Protozoan , Trypanosomatina , Phylogeny , Trypanosomatina/classification , Trypanosomatina/genetics
8.
Pathogens ; 8(3)2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31540520

ABSTRACT

Advancements in next-generation sequencing techniques have led to a substantial increase in the genomic information available for analyses in evolutionary biology. As such, this data requires the exponential growth in bioinformatic methods and expertise required to understand such vast quantities of genomic data. Alignment-free phylogenomics offer an alternative approach for large-scale analyses that may have the potential to address these challenges. The evolutionary relationships between various species within the trypanosomatid family, specifically members belonging to the genera Leishmania and Trypanosoma have been extensively studies over the last 30 years. However, there is a need for a more exhaustive analysis of the Trypanosomatidae, summarising the evolutionary patterns amongst the entire family of these important protists. The mitochondrial DNA of the trypanosomatids, better known as the kinetoplast, represents a valuable taxonomic marker given its unique presence across all kinetoplastid protozoans. The aim of this study was to validate the reliability and robustness of alignment-free approaches for phylogenomic analyses and its applicability to reconstruct the evolutionary relationships between the trypanosomatid family. In the present study, alignment-free analyses demonstrated the strength of these methods, particularly when dealing with large datasets compared to the traditional phylogenetic approaches. We present a maxicircle genome phylogeny of 46 species spanning the trypanosomatid family, demonstrating the superiority of the maxicircle for the analysis and taxonomic resolution of the Trypanosomatidae.

9.
Am J Trop Med Hyg ; 101(3): 590-601, 2019 09.
Article in English | MEDLINE | ID: mdl-31333156

ABSTRACT

Leishmaniasis is a vector-borne disease caused by protozoan parasites of the Leishmania genus. In Australia, leishmaniasis is an imported disease that is presenting itself at increased rates because of international travel, the influx of immigrants, and deployment of military operations to endemic regions. Although Leishmania species are morphologically indistinguishable, there is a strong correlation between some causative species of leishmaniasis and the subsequent response to the treatments available and patient outcome. Consequently, identification of the infective species is imperative as misidentification can result in the administering of an ineffective drug. The aim of this study was to develop a simple diagnostic tool with high sensitivity and specificity, which is capable of detecting the presence of the parasite and accurately differentiating the causative species in question. Using the advantageous properties of the maxi-circle kinetoplast DNA, a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) targeting the ND7 gene was developed for the analysis of imported cases of human leishmaniasis in Australia. Designed as a dual analysis, concurrent PCR of Leishmania maxi-circle DNA and digestion with two separate enzymes (NlaIII and HpyCH4IV), this study provides an appraisal on 24 imported cases of leishmaniasis between 2008 and 2017. Five Leishmania species were reported, with members of the Viannia subgenus being the most common. The implementation of novel diagnostic procedures for leishmaniasis such as the one reported here is needed to establish a gold standard practice for the diagnosis and treatment of leishmaniasis.


Subject(s)
DNA, Kinetoplast/genetics , Leishmaniasis, Cutaneous/diagnosis , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Adult , Aged , Australia , Child , Child, Preschool , Communicable Diseases, Imported/parasitology , DNA, Protozoan/genetics , Female , Humans , Leishmania/classification , Leishmaniasis, Cutaneous/parasitology , Male , Membrane Proteins/genetics , Middle Aged , Phylogeny , Protozoan Proteins/genetics , Sensitivity and Specificity , Travel , Young Adult
10.
Infect Genet Evol ; 70: 90-100, 2019 06.
Article in English | MEDLINE | ID: mdl-30738194

ABSTRACT

The mitochondrial DNA (mtDNA) is a potentially valuable phylogenetic marker given its presence across all eukaryotic taxa and its relative conservation in structure and sequence. In trypanosomatids, a homologue of the mtDNA referred to as the maxicircle DNA, is located within a specialised structure in the single mitochondrion of the trypanosomatids called the kinetoplast; a high molecular weight network of DNA composed of thousands of catenated minicircles and a smaller number of larger maxicircles. Unique to the kinetoplastid protists, the maxicircle component of this complex network could represent a desirable target for taxonomic inquiry that may also facilitate exploration of the evolutionary history of this important group of parasites. The aim of this study was to investigate the phylogenetic value of the trypanosomatid maxicircle for these applications. Maxicircle sequences were obtained either by assembling raw sequence data publicly accessible in online databases (i.e., NCBI), or by amplification of novel maxicircle sequences from trypanosomatid DNA using long-range (LR) PCR with subsequent Illumina sequencing. This procedure facilitated the generation of nearly complete maxicircle sequences (i.e., excluding the divergent region) for numerous dixenous and monoxenous trypanosomatid species. Annotation of each maxicircle sequence confirmed that their structure was conserved across all taxa examined. Phylogenetic analyses confirmed that Z. australiensis showed a greater genetic relatedness with the dixenous trypanosomatids of the genera Leishmania and Endotrypanum, as opposed to members of the monoxenous genera Crithidia and Leptomonas. Additionally, molecular clock analysis supported that the dixenous Leishmaniinae appeared approximately 75 million years ago during the breakup of Gondwana. In line with previous studies, our results support the Supercontinents hypothesis regarding the origin of dixenous Leishmaniinae. Ultimately, we demonstrate that the maxicircle represents an excellent phylogenetic marker for studying the evolutionary history of trypanosomatids, resulting in trees with very high bootstrap support values.


Subject(s)
DNA, Kinetoplast/genetics , Trypanosomatina/genetics , Animals , Biological Evolution , Crithidia/genetics , Crithidia/ultrastructure , Genetic Markers , Leishmania/genetics , Leishmania/ultrastructure , Phylogeography , Trypanosomatina/ultrastructure
11.
Parasit Vectors ; 10(1): 287, 2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28595622

ABSTRACT

Trypanosomatids are protozoan parasites of the class Kinetoplastida predominately restricted to invertebrate hosts (i.e. possess a monoxenous life-cycle). However, several genera are pathogenic to humans, animals and plants, and have an invertebrate vector that facilitates their transmission (i.e. possess a dixenous life-cycle). Phytomonas is one dixenous genus that includes several plant pathogens transmitted by phytophagous insects. Trypanosoma and Leishmania are dixenous genera that infect vertebrates, including humans, and are transmitted by hematophagous invertebrates. Traditionally, monoxenous trypanosomatids such as Leptomonas were distinguished from morphologically similar dixenous species based on their restriction to an invertebrate host. Nonetheless, this criterion is somewhat flawed as exemplified by Leptomonas seymouri which reportedly infects vertebrates opportunistically. Similarly, Novymonas and Zelonia are presumably monoxenous genera yet sit comfortably in the dixenous clade occupied by Leishmania. The isolation of Leishmania macropodum from a biting midge (Forcipomyia spp.) rather than a phlebotomine sand fly calls into question the exclusivity of the Leishmania-sand fly relationship, and its suitability for defining the Leishmania genus. It is now accepted that classic genus-defining characteristics based on parasite morphology and host range are insufficient to form the sole basis of trypanosomatid taxonomy as this has led to several instances of paraphyly. While improvements have been made, resolution of evolutionary relationships within the Trypanosomatidae is confounded by our incomplete knowledge of its true diversity. The known trypanosomatids probably represent a fraction of those that exist and isolation of new species will help resolve relationships in this group with greater accuracy. This review incites a dialogue on how our understanding of the relationships between certain trypanosomatids has shifted, and discusses new knowledge that informs the present taxonomy of these important parasites.


Subject(s)
Phylogeny , Trypanosomatina/classification , Animals , Plants , Trypanosomatina/isolation & purification
12.
PLoS Negl Trop Dis ; 11(1): e0005215, 2017 01.
Article in English | MEDLINE | ID: mdl-28081121

ABSTRACT

The genus Leishmania includes approximately 53 species, 20 of which cause human leishmaniais; a significant albeit neglected tropical disease. Leishmaniasis has afflicted humans for millennia, but how ancient is Leishmania and where did it arise? These questions have been hotly debated for decades and several theories have been proposed. One theory suggests Leishmania originated in the Palearctic, and dispersed to the New World via the Bering land bridge. Others propose that Leishmania evolved in the Neotropics. The Multiple Origins theory suggests that separation of certain Old World and New World species occurred due to the opening of the Atlantic Ocean. Some suggest that the ancestor of the dixenous genera Leishmania, Endotrypanum and Porcisia evolved on Gondwana between 90 and 140 million years ago. In the present study a detailed molecular and morphological characterisation was performed on a novel Australian trypanosomatid following its isolation in Australia's tropics from the native black fly, Simulium (Morops) dycei Colbo, 1976. Phylogenetic analyses were conducted and confirmed this parasite as a sibling to Zelonia costaricensis, a close relative of Leishmania previously isolated from a reduviid bug in Costa Rica. Consequently, this parasite was assigned the name Zelonia australiensis sp. nov. Assuming Z. costaricensis and Z. australiensis diverged when Australia and South America became completely separated, their divergence occurred between 36 and 41 million years ago at least. Using this vicariance event as a calibration point for a phylogenetic time tree, the common ancestor of the dixenous genera Leishmania, Endotrypanum and Porcisia appeared in Gondwana approximately 91 million years ago. Ultimately, this study contributes to our understanding of trypanosomatid diversity, and of Leishmania origins by providing support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae.


Subject(s)
Insect Vectors/parasitology , Insecta/parasitology , Kinetoplastida/isolation & purification , Kinetoplastida/physiology , Animals , Australia , Female , Insect Vectors/classification , Insecta/classification , Kinetoplastida/classification , Kinetoplastida/genetics , Leishmania/classification , Leishmania/genetics , Leishmania/isolation & purification , Leishmania/physiology , Male , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...