Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Sci Rep ; 14(1): 4322, 2024 02 21.
Article En | MEDLINE | ID: mdl-38383551

Long interspersed nuclear elements (LINE-1s/L1s) are a group of retrotransposons that can copy themselves within a genome. In humans, it is the most successful transposon in nucleotide content. L1 expression is generally mild in normal human tissues, but the activity has been shown to increase significantly in many cancers. Few studies have examined L1 expression at single-cell resolution, thus it is undetermined whether L1 reactivation occurs solely in malignant cells within tumors. One of the cancer types with frequent L1 activity is high-grade serous ovarian carcinoma (HGSOC). Here, we identified locus-specific L1 expression with 3' single-cell RNA sequencing in pre- and post-chemotherapy HGSOC sample pairs from 11 patients, and in fallopian tube samples from five healthy women. Although L1 expression quantification with the chosen technique was challenging due to the repetitive nature of the element, we found evidence of L1 expression primarily in cancer cells, but also in other cell types, e.g. cancer-associated fibroblasts. The expression levels were similar in samples taken before and after neoadjuvant chemotherapy, indicating that L1 transcriptional activity was unaffected by clinical platinum-taxane treatment. Furthermore, L1 activity was negatively associated with the expression of MYC target genes, a finding that supports earlier literature of MYC being an L1 suppressor.


Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Long Interspersed Nucleotide Elements/genetics , Retroelements/genetics , Fallopian Tubes/metabolism
2.
Nat Commun ; 15(1): 1158, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38326354

Exploring non-genetic evolution of cell states during cancer treatments has become attainable by recent advances in lineage-tracing methods. However, transcriptional changes that drive cells into resistant fates may be subtle, necessitating high resolution analysis. Here, we present ReSisTrace that uses shared transcriptomic features of sister cells to predict the states priming treatment resistance. Applying ReSisTrace in ovarian cancer cells perturbed with olaparib, carboplatin or natural killer (NK) cells reveals pre-resistant phenotypes defined by proteostatic and mRNA surveillance features, reflecting traits enriched in the upcoming subclonal selection. Furthermore, we show that DNA repair deficiency renders cells susceptible to both DNA damaging agents and NK killing in a context-dependent manner. Finally, we leverage the obtained pre-resistance profiles to predict and validate small molecules driving cells to sensitive states prior to treatment. In summary, ReSisTrace resolves pre-existing transcriptional features of treatment vulnerability, facilitating both molecular patient stratification and discovery of synergistic pre-sensitizing therapies.


Killer Cells, Natural , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Carboplatin , Phenotype , Cell Line, Tumor
3.
Clin Cancer Res ; 29(16): 3110-3123, 2023 08 15.
Article En | MEDLINE | ID: mdl-36805632

PURPOSE: Deficiency in homologous recombination (HR) repair of DNA damage is characteristic of many high-grade serous ovarian cancers (HGSC). It is imperative to identify patients with homologous recombination-deficient (HRD) tumors as they are most likely to benefit from platinum-based chemotherapy and PARP inhibitors (PARPi). Existing methods measure historical, not necessarily current HRD and/or require high tumor cell content, which is not achievable for many patients. We set out to develop a clinically feasible assay for identifying functionally HRD tumors that can predict clinical outcomes. EXPERIMENTAL DESIGN: We quantified RAD51, a key HR protein, in immunostained formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained from chemotherapy-naïve and neoadjuvant chemotherapy (NACT)-treated HGSC patients. We defined cutoffs for functional HRD separately for these sample types, classified the patients accordingly as HRD or HR-proficient, and analyzed correlations with clinical outcomes. From the same specimens, genomics-based HRD estimates (HR gene mutations, genomic signatures, and genomic scars) were also determined, and compared with functional HR (fHR) status. RESULTS: fHR status significantly predicted several clinical outcomes, including progression-free survival (PFS) and overall survival (OS), when determined from chemo-naïve (PFS, P < 0.0001; OS, P < 0.0001) as well as NACT-treated (PFS, P < 0.0001; OS, P = 0.0033) tumor specimens. The fHR test also identified as HRD those PARPi-at-recurrence-treated patients with longer OS (P = 0.0188). CONCLUSIONS: We developed an fHR assay performed on routine FFPE specimens, obtained from either chemo-naïve or NACT-treated HGSC patients, that can significantly predict real-world platinum-based chemotherapy and PARPi response. See related commentary by Garg and Oza, p. 2957.


Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Homologous Recombination/genetics , Mutation , Recombinational DNA Repair/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
4.
NPJ Precis Oncol ; 6(1): 96, 2022 Dec 29.
Article En | MEDLINE | ID: mdl-36581696

Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic allelic imbalances (AIs) has been limited by methods focused on BRCA1/2 mutations and using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of AIs in high-grade serous ovarian cancer (HGSC). We used machine learning and statistics to generate improved criteria to identify HRD in HGSC (ovaHRDscar). ovaHRDscar significantly predicted clinical outcomes in three independent patient cohorts with higher precision than previous methods. Characterization of 98 spatiotemporally distinct metastatic samples revealed low intra-patient variation and indicated the primary tumor as the preferred site for clinical sampling in HGSC. Further, our approach improved the prediction of clinical outcomes in triple-negative breast cancer (tnbcHRDscar), validated in two independent patient cohorts. In conclusion, our tumor-specific, systematic approach has the potential to improve patient selection for HR-targeted therapies.

5.
Front Genet ; 13: 913163, 2022.
Article En | MEDLINE | ID: mdl-35873465

Microsatellite sequences are particularly prone to slippage during DNA replication, forming insertion-deletion loops that, if left unrepaired, result in de novo mutations (expansions or contractions of the repeat array). Mismatch repair (MMR) is a critical DNA repair mechanism that corrects these insertion-deletion loops, thereby maintaining microsatellite stability. MMR deficiency gives rise to the molecular phenotype known as microsatellite instability (MSI). By sequencing MMR-proficient and -deficient (Mlh1 +/+ and Mlh1 -/- ) single-cell exomes from mouse T cells, we reveal here several previously unrecognized features of in vivo MSI. Specifically, mutational dynamics of insertions and deletions were different on multiple levels. Factors that associated with propensity of mononucleotide microsatellites to insertions versus deletions were: microsatellite length, nucleotide composition of the mononucleotide tract, gene length and transcriptional status, as well replication timing. Here, we show on a single-cell level that deletions - the predominant MSI type in MMR-deficient cells - are preferentially associated with longer A/T tracts, long or transcribed genes and later-replicating genes.

6.
Front Oncol ; 11: 733700, 2021.
Article En | MEDLINE | ID: mdl-34616682

Critical DNA repair pathways become deranged during cancer development. This vulnerability may be exploited with DNA-targeting chemotherapy. Topoisomerase II inhibitors induce double-strand breaks which, if not repaired, are detrimental to the cell. This repair process requires high-fidelity functional homologous recombination (HR) or error-prone non-homologous end joining (NHEJ). If either of these pathways is defective, a compensatory pathway may rescue the cells and induce treatment resistance. Consistently, HR proficiency, either inherent or acquired during the course of the disease, enables tumor cells competent to repair the DNA damage, which is a major problem for chemotherapy in general. In this context, c-Abl is a protein tyrosine kinase that is involved in DNA damage-induced stress. We used a low-dose topoisomerase II inhibitor mitoxantrone to induce DNA damage which caused a transient cell cycle delay but allowed eventual passage through this checkpoint in most cells. We show that the percentage of HR and NHEJ efficient HeLa cells decreased more than 50% by combining c-Abl inhibitor imatinib with mitoxantrone. This inhibition of DNA repair caused more than 87% of cells in G2/M arrest and a significant increase in apoptosis. To validate the effect of the combination treatment, we tested it on commercial and patient-derived cell lines in high-grade serous ovarian cancer (HGSOC), where chemotherapy resistance correlates with HR proficiency and is a major clinical problem. Results obtained with HR-proficient and deficient HGSOC cell lines show a 50-85% increase of sensitivity by the combination treatment. Our data raise the possibility of successful targeting of treatment-resistant HR-proficient cancers.

7.
Nat Commun ; 12(1): 5448, 2021 09 14.
Article En | MEDLINE | ID: mdl-34521855

Mechanical forces in a constrained cellular environment were recently established as a facilitator of chromosomal damage. Whether this could contribute to tumorigenesis is not known. Uterine leiomyomas are common neoplasms that display relatively few chromosomal aberrations. We hypothesized that if mechanical forces contribute to chromosomal damage, signs of this could be seen in uterine leiomyomas from parous women. We examined the karyotypes of 1946 tumors, and found a striking overrepresentation of chromosomal damage associated with parity. We then subjected myometrial cells to physiological forces similar to those encountered during pregnancy, and found this to cause DNA breaks and a DNA repair response. While mechanical forces acting in constrained cellular environments may thus contribute to neoplastic degeneration, and genesis of uterine leiomyoma, further studies are needed to prove possible causality of the observed association. No evidence for progression to malignancy was found.


Chromosome Aberrations , DNA Repair , Leiomyoma/genetics , Mediator Complex/genetics , Parity , Uterine Neoplasms/genetics , Adult , Biomechanical Phenomena , DNA Breaks, Double-Stranded , Female , Gene Expression , Humans , Hysterectomy , Karyotype , Leiomyoma/etiology , Leiomyoma/pathology , Leiomyoma/surgery , Mutation , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myometrium/metabolism , Myometrium/pathology , Pregnancy , Primary Cell Culture , Prospective Studies , Uterine Neoplasms/etiology , Uterine Neoplasms/pathology , Uterine Neoplasms/surgery
8.
DNA Repair (Amst) ; 106: 103178, 2021 10.
Article En | MEDLINE | ID: mdl-34311271

Tumors of Lynch syndrome (LS) patients display high levels of microsatellite instability (MSI), which results from complete loss of DNA mismatch repair (MMR), in line with Knudson's two-hit hypothesis. Why some organs, in particular those of the gastrointestinal (GI) tract, are prone to tumorigenesis in LS remains unknown. We hypothesized that MMR is haploinsufficient in certain tissues, compromising microsatellite stability in a tissue-specific manner before tumorigenesis. Using mouse genetics, we tested how levels of MLH1, a central MMR protein, affect age- and tissue-specific microsatellite stability in vivo and whether elevated MSI is detectable prior to loss of MMR function and to neoplastic growth. To assess putative tissue-specific MMR haploinsufficiency, we determined relevant molecular phenotypes (MSI, Mlh1 promoter methylation status, MLH1 protein and RNA levels) in jejuna of Mlh1+/- mice and compared them to those in spleen, as well as to MMR-proficient and -deficient controls (Mlh1+/+ and Mlh1-/- mice). While spleen MLH1 levels of Mlh1+/- mice were, as expected, approximately 50 % compared to wildtype mice, MLH1 levels in jejunum varied substantially between individual Mlh1+/- mice and moreover, decreased with age. Mlh1+/- mice with soma-wide Mlh1 promoter methylation often displayed severe MLH1 depletion in jejunum. Reduced (but still detectable) MLH1 levels correlated with elevated MSI in Mlh1+/- jejunum. MSI in jejunum increased with age, while in spleens of the same mice, MLH1 levels and microsatellites remained stable. Thus, MLH1 expression levels are particularly labile in intestine of Mlh1+/- mice, giving rise to tissue-specific MSI long before neoplasia. A similar mechanism likely also operates also in the human GI epithelium and could explain the wide range in age-of-onset of LS-associated tumorigenesis.


DNA Mismatch Repair , Gene Expression Regulation , Haploinsufficiency , Intestinal Mucosa/metabolism , Microsatellite Instability , MutL Protein Homolog 1/genetics , Animals , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , Disease Models, Animal , Female , Jejunum/metabolism , Male , Mice , Mice, Transgenic , Organ Specificity , Promoter Regions, Genetic , Spleen/metabolism
9.
EMBO J ; 40(13): e108552, 2021 07 01.
Article En | MEDLINE | ID: mdl-34031897

Segregation of the largely non-homologous X and Y sex chromosomes during male meiosis is not a trivial task, because their pairing, synapsis, and crossover formation are restricted to a tiny region of homology, the pseudoautosomal region. In humans, meiotic X-Y missegregation can lead to 47, XXY offspring, also known as Klinefelter syndrome, but to what extent genetic factors predispose to paternal sex chromosome aneuploidy has remained elusive. In this issue, Liu et al (2021) provide evidence that deleterious mutations in the USP26 gene constitute one such factor.


Aneuploidy , Meiosis , Cysteine Endopeptidases , Humans , Male , Risk Factors , Spermatozoa
10.
Mutagenesis ; 36(3): 237-244, 2021 07 07.
Article En | MEDLINE | ID: mdl-33740045

DNA mismatch repair (MMR) proteins play an important role in maintaining genome stability, both in somatic and in germline cells. Loss of MLH1, a central MMR protein, leads to infertility and to microsatellite instability (MSI) in spermatocytes, however, the effect of Mlh1 heterozygosity on germline genome stability remains unexplored. To test the effect of Mlh1 heterozygosity on MSI in mature sperm, we combined mouse genetics with single-molecule PCR that detects allelic changes at unstable microsatellites. We discovered 4.5% and 5.9% MSI in sperm of 4- and 12-month-old Mlh1+/- mice, respectively, and that Mlh1 promoter methylation in Mlh1+/- sperm correlated with higher MSI. No such elevated MSI was seen in non-proliferating somatic cells. Additionally, we show contrasting dynamics of deletions versus insertions at unstable microsatellites (mononucleotide repeats) in sperm.


DNA Methylation , Microsatellite Instability , Microsatellite Repeats , MutL Protein Homolog 1/genetics , Promoter Regions, Genetic , Spermatozoa/metabolism , Animals , Female , Heterozygote , Male , Mice
11.
iScience ; 23(9): 101452, 2020 Sep 25.
Article En | MEDLINE | ID: mdl-32858340

DNA mismatch repair (MMR) corrects replication errors and is recruited by the histone mark H3K36me3, enriched in exons of transcriptionally active genes. To dissect in vivo the mutational landscape shaped by these processes, we employed single-cell exome sequencing on T cells of wild-type and MMR-deficient (Mlh1-/-) mice. Within active genes, we uncovered a spatial bias in MMR efficiency: 3' exons, often H3K36me3-enriched, acquire significantly fewer MMR-dependent mutations compared with 5' exons. Huwe1 and Mcm7 genes, both active during lymphocyte development, stood out as mutational hotspots in MMR-deficient cells, demonstrating their intrinsic vulnerability to replication error in this cell type. Both genes are H3K36me3-enriched, which can explain MMR-mediated elimination of replication errors in wild-type cells. Thus, H3K36me3 can boost MMR in transcriptionally active regions, both locally and globally. This offers an attractive concept of thrifty MMR targeting, where critical genes in each cell type enjoy preferential shielding against de novo mutations.

12.
Nature ; 582(7812): 426-431, 2020 06.
Article En | MEDLINE | ID: mdl-32461690

Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation1,2. How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.


DNA Breaks, Double-Stranded , Meiosis , Pseudoautosomal Regions/genetics , Pseudoautosomal Regions/metabolism , Animals , Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly , Chromosome Pairing/genetics , DNA-Binding Proteins , Female , Heterochromatin/genetics , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Kinetics , Male , Meiosis/genetics , Mice , Minisatellite Repeats/genetics , Oocytes/metabolism , Recombination, Genetic/genetics , Sex Characteristics , Sister Chromatid Exchange , Spermatocytes/metabolism , Ubiquitin-Protein Ligases/metabolism
13.
Clin Epigenetics ; 11(1): 192, 2019 12 11.
Article En | MEDLINE | ID: mdl-31829282

BACKGROUND: The epigenome plays a key role in cancer heterogeneity and drug resistance. Hence, a number of epigenetic inhibitors have been developed and tested in cancers. The major focus of most studies so far has been on the cytotoxic effect of these compounds, and only few have investigated the ability to revert the resistant phenotype in cancer cells. Hence, there is a need for a systematic methodology to unravel the mechanisms behind epigenetic sensitization. RESULTS: We have developed a high-throughput protocol to screen non-simultaneous drug combinations, and used it to investigate the reprogramming potential of epigenetic inhibitors. We demonstrated the effectiveness of our protocol by screening 60 epigenetic compounds on diffuse large B-cell lymphoma (DLBCL) cells. We identified several histone deacetylase (HDAC) and histone methyltransferase (HMT) inhibitors that acted synergistically with doxorubicin and rituximab. These two classes of epigenetic inhibitors achieved sensitization by disrupting DNA repair, cell cycle, and apoptotic signaling. The data used to perform these analyses are easily browsable through our Results Explorer. Additionally, we showed that these inhibitors achieve sensitization at lower doses than those required to induce cytotoxicity. CONCLUSIONS: Our drug screening approach provides a systematic framework to test non-simultaneous drug combinations. This methodology identified HDAC and HMT inhibitors as successful sensitizing compounds in treatment-resistant DLBCL. Further investigation into the mechanisms behind successful epigenetic sensitization highlighted DNA repair, cell cycle, and apoptosis as the most dysregulated pathways. Altogether, our method adds supporting evidence in the use of epigenetic inhibitors as sensitizing agents in clinical settings.


Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Lymphoma, Large B-Cell, Diffuse/genetics , Rituximab/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , DNA Repair/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Drug Synergism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Screening Assays , Histone Deacetylase Inhibitors/pharmacology , Histone Methyltransferases/antagonists & inhibitors , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/enzymology
14.
J Vis Exp ; (149)2019 07 27.
Article En | MEDLINE | ID: mdl-31403628

Long interspersed nuclear elements 1 (LINE-1s) are the only family of mobile genetic elements in the human genome that can move autonomously. They do so by a process called retrotransposition wherein they transcribe to form an mRNA intermediate which is then consequently inserted into the genome by reverse transcription. Despite being silent in normal cells, LINE-1s are highly active in different epithelial tumors. De novo LINE-1 insertions can potentially drive tumorigenesis, and hence it is important to systematically study LINE-1 retrotransposition in cancer. Out of ~150 retrotransposition-competent LINE-1s present in the human genome, only a handful of LINE-1 loci, also referred to as "hot" LINE-1s, account for the majority of de novo LINE-1 insertion in different cancer types. We have developed a simple polymerase chain reaction (PCR)-based method to monitor retrotransposition activity of these hot LINE-1s. This method, based on long-distance inverse (LDI)-PCR, takes advantage of 3´ transduction, a mechanism by which a LINE-1 mobilizes its flanking non-repetitive region, which can subsequently be used to identify de novo LINE-1 3´ transduction events stemming from a particular hot LINE-1.


Genome, Human , Long Interspersed Nucleotide Elements/physiology , Polymerase Chain Reaction , Reverse Transcription/physiology , Cell Nucleus , Gene Expression Regulation/physiology , Humans
15.
Endocrinology ; 160(5): 1119-1136, 2019 05 01.
Article En | MEDLINE | ID: mdl-30759202

A prerequisite for lifelong sperm production is that spermatogonial stem cells (SSCs) balance self-renewal and differentiation, yet factors required for this balance remain largely undefined. Using mouse genetics, we now demonstrate that the ubiquitously expressed transcription factor upstream stimulatory factor (USF)1 is critical for the maintenance of SSCs. We show that USF1 is not only detected in Sertoli cells as previously reported, but also in SSCs. Usf1-deficient mice display progressive spermatogenic decline as a result of age-dependent loss of SSCs. According to our data, the germ cell defect in Usf1-/- mice cannot be attributed to impairment of Sertoli cell development, maturation, or function, but instead is likely due to an inability of SSCs to maintain a quiescent state. SSCs of Usf1-/- mice undergo continuous proliferation, which provides an explanation for their age-dependent depletion. The proliferation-coupled exhaustion of SSCs in turn results in progressive degeneration of the seminiferous epithelium, gradual decrease in sperm production, and testicular atrophy. We conclude that the general transcription factor USF1 is indispensable for the proper maintenance of mammalian spermatogenesis.


Cell Differentiation/genetics , Cell Proliferation/genetics , Spermatozoa/metabolism , Stem Cells/metabolism , Upstream Stimulatory Factors/genetics , Animals , Gene Expression Regulation, Developmental , Male , Mice, Inbred C57BL , Mice, Knockout , Sertoli Cells/cytology , Sertoli Cells/metabolism , Spermatogenesis/genetics , Spermatogonia/cytology , Spermatogonia/metabolism , Spermatozoa/cytology , Stem Cells/cytology , Testis/cytology , Testis/growth & development , Testis/metabolism , Testosterone/metabolism , Upstream Stimulatory Factors/metabolism
16.
Cell Mol Life Sci ; 76(6): 1135-1150, 2019 Mar.
Article En | MEDLINE | ID: mdl-30564841

The production of gametes (sperm and eggs in mammals) involves two sequential cell divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate to different daughter cells, and meiosis II resembles mitotic divisions in that sister chromatids separate. While in principle the process is identical in males and females, the time frame and susceptibility to chromosomal defects, including achiasmy and cohesion weakening, and the response to mis-segregating chromosomes are not. In this review, we compare and contrast meiotic spindle assembly checkpoint function and aneuploidy in the two sexes.


Aneuploidy , M Phase Cell Cycle Checkpoints/genetics , Meiosis/genetics , Spindle Apparatus/genetics , Animals , Chromatids/genetics , Chromosome Segregation/genetics , Female , Humans , Male
17.
Clin Cancer Res ; 24(18): 4482-4493, 2018 09 15.
Article En | MEDLINE | ID: mdl-29858219

Purpose: Homologous recombination deficiency (HRD) correlates with platinum sensitivity in patients with ovarian cancer, which clinically is the most useful predictor of sensitivity to PARPi. To date, there are no reliable diagnostic tools to anticipate response to platinum-based chemotherapy, thus we aimed to develop an ex vivo functional HRD detection test that could predict both platinum-sensitivity and patient eligibility to targeted drug treatments.Experimental Design: We obtained a functional HR score by quantifying homologous recombination (HR) repair after ionizing radiation-induced DNA damage in primary ovarian cancer samples (n = 32). Samples clustered in 3 categories: HR-deficient, HR-low, and HR-proficient. We analyzed the HR score association with platinum sensitivity and treatment response, platinum-free interval (PFI) and overall survival (OS), and compared it with other clinical parameters. In parallel, we performed DNA-sequencing of HR genes to assess if functional HRD can be predicted by currently offered genetic screening.Results: Low HR scores predicted primary platinum sensitivity with high statistical significance (P = 0.0103), associated with longer PFI (HR-deficient vs. HR-proficient: 531 vs. 53 days), and significantly correlated with improved OS (HR score <35 vs. ≥35, hazard ratio = 0.08, P = 0.0116). At the genomic level, we identified a few unclear mutations in HR genes and the mutational signature associated with HRD, but, overall, genetic screening failed to predict functional HRD.Conclusions: We developed an ex vivo assay that detects tumor functional HRD and an HR score able to predict platinum sensitivity, which holds the clinically relevant potential to become the routine companion diagnostic in the management of patients with ovarian cancer. Clin Cancer Res; 24(18); 4482-93. ©2018 AACR.


DNA Damage/drug effects , Homologous Recombination/genetics , Ovarian Neoplasms/drug therapy , Platinum/administration & dosage , Aged , Antineoplastic Combined Chemotherapy Protocols , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Cell Line, Tumor , Disease-Free Survival , Drug Resistance, Neoplasm/genetics , Female , Humans , Loss of Heterozygosity/genetics , Middle Aged , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Platinum/adverse effects
19.
Sci Rep ; 7(1): 14521, 2017 11 06.
Article En | MEDLINE | ID: mdl-29109480

Long interspersed nuclear elements-1 (L1s) are a large family of retrotransposons. Retrotransposons are repetitive sequences that are capable of autonomous mobility via a copy-and-paste mechanism. In most copy events, only the L1 sequence is inserted, however, they can also mobilize the flanking non-repetitive region by a process known as 3' transduction. L1 insertions can contribute to genome plasticity and cause potentially tumorigenic genomic instability. However, detecting the activity of a particular source L1 and identifying new insertions stemming from it is a challenging task with current methodological approaches. We developed a long-distance inverse PCR (LDI-PCR) based approach to monitor the mobility of active L1 elements based on their 3' transduction activity. LDI-PCR requires no prior knowledge of the insertion target region. By applying LDI-PCR in conjunction with Nanopore sequencing (Oxford Nanopore Technologies) on one L1 reported to be particularly active in human cancer genomes, we detected 14 out of 15 3' transductions previously identified by whole genome sequencing in two different colorectal tumour samples. In addition we discovered 25 novel highly subclonal insertions. Furthermore, the long sequencing reads produced by LDI-PCR/Nanopore sequencing enabled the identification of both the 5' and 3' junctions and revealed detailed insertion sequence information.


Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Long Interspersed Nucleotide Elements/genetics , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Transduction, Genetic , Humans , Mutation , Nanopores
20.
Brain ; 140(8): 2093-2103, 2017 Aug 01.
Article En | MEDLINE | ID: mdl-28633435

Defects in mRNA export from the nucleus have been linked to various neurodegenerative disorders. We report mutations in the gene MCM3AP, encoding the germinal center associated nuclear protein (GANP), in nine affected individuals from five unrelated families. The variants were associated with severe childhood onset primarily axonal (four families) or demyelinating (one family) Charcot-Marie-Tooth neuropathy. Mild to moderate intellectual disability was present in seven of nine affected individuals. The affected individuals were either compound heterozygous or homozygous for different MCM3AP variants, which were predicted to cause depletion of GANP or affect conserved amino acids with likely importance for its function. Accordingly, fibroblasts of affected individuals from one family demonstrated severe depletion of GANP. GANP has been described to function as an mRNA export factor, and to suppress TDP-43-mediated motor neuron degeneration in flies. Thus our results suggest defective mRNA export from nucleus as a potential pathogenic mechanism of axonal degeneration in these patients. The identification of MCM3AP variants in affected individuals from multiple centres establishes it as a disease gene for childhood-onset recessively inherited Charcot-Marie-Tooth neuropathy with intellectual disability.


Acetyltransferases/genetics , Charcot-Marie-Tooth Disease/genetics , Genetic Predisposition to Disease/genetics , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Acetyltransferases/metabolism , Adolescent , Adult , Cells, Cultured , Charcot-Marie-Tooth Disease/complications , Child , Child, Preschool , Female , Fibroblasts/metabolism , Humans , Intellectual Disability/complications , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mutation , Pedigree , Young Adult
...