Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Pathol ; 31(1): 84-102, 2021 01.
Article in English | MEDLINE | ID: mdl-32654284

ABSTRACT

Congenital central hypoventilation syndrome (CCHS) represents a rare genetic disorder usually caused by mutations in the homeodomain transcription factor PHOX2B. Some CCHS patients suffer mainly from deficiencies in CO2 and/or O2 respiratory chemoreflex, whereas other patients present with full apnea shortly after birth. Our goal was to identify the neuropathological mechanisms of apneic presentations in CCHS. In the developing murine neuroepithelium, Phox2b is expressed in three discrete progenitor domains across the dorsal-ventral axis, with different domains responsible for producing unique autonomic or visceral motor neurons. Restricting the expression of mutant Phox2b to the ventral visceral motor neuron domain induces marked newborn apnea together with a significant loss of visceral motor neurons, RTN ablation, and preBötzinger complex dysfunction. This finding suggests that the observed apnea develops through non-cell autonomous developmental mechanisms. Mutant Phox2b expression in dorsal rhombencephalic neurons did not generate significant respiratory dysfunction, but did result in subtle metabolic thermoregulatory deficiencies. We confirm the expression of a novel murine Phox2b splice variant which shares exons 1 and 2 with the more widely studied Phox2b splice variant, but which differs in exon 3 where most CCHS mutations occur. We also show that mutant Phox2b expression in the visceral motor neuron progenitor domain increases cell proliferation at the expense of visceral motor neuron development. We propose that visceral motor neurons may function as organizers of brainstem respiratory neuron development, and that disruptions in their development result in secondary/non-cell autonomous maldevelopment of key brainstem respiratory neurons.


Subject(s)
Apnea/physiopathology , Homeodomain Proteins/metabolism , Hypoventilation/congenital , Motor Neurons/metabolism , Neurogenesis/physiology , Sleep Apnea, Central/physiopathology , Transcription Factors/metabolism , Animals , Animals, Newborn , Apnea/etiology , Disease Models, Animal , Hypoventilation/complications , Hypoventilation/physiopathology , Mice , Phenotype , Sleep Apnea, Central/complications
2.
Diagn Pathol ; 14(1): 19, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30767775

ABSTRACT

BACKGROUND: Laser-interstitial thermal therapy (LITT) has been supported by some authors as an ablative treatment of glioblastoma multiforme (GBM). Although the effects of LITT have been modeled in vivo, the histologic effects in a clinical circumstance have not been described. We analyzed tissue from a patient who underwent LITT as primary treatment for GBM. CASE PRESENTATION: A 62-year-old male was diagnosed with a left temporal GBM and underwent LITT at an outside institution. Despite corticosteroid therapy, the patient was referred with increasing headache and acalculia associated with progressive peritumoral edema two weeks after LITT procedure. En bloc resection of the enhancing lesion and adjacent temporal lobe was performed with steroid-independent symptom resolution (follow-up, > 2 years). Histologic analysis revealed three distinct histologic zones concentrically radiating from the center of the treatment site. An acellular central region of necrosis (Zone 1) was surrounded by a rim of granulation tissue with macrophages (CD68) (Zone 2; mean thickness, 1.3 ± 0.3 mm [±S.D.]). Viable tumor cells (identified by Ki-67, p53 and Olig2 immunohistochemistry) were found (Zone 3) immediately adjacent to granulation tissue. The histologic volume of thermal tissue ablation/granulation was consistent with preoperative (pre-resection) magnetic resonance (MR)-imaging. CONCLUSION: These findings are the first in vivo in humans to reveal that LITT causes a defined pattern of tissue necrosis, concentric destruction of tumor and tissue with viable tumor cells just beyond the zones of central necrosis and granulation. Furthermore, MR-imaging appears to be an accurate surrogate of tissue/tumor ablation in the early period (2 weeks) post-LITT treatment. Surgery is an effective strategy for patients with post-LITT swelling which does not respond to steroids.


Subject(s)
Brain Neoplasms/pathology , Brain Neoplasms/therapy , Glioblastoma/pathology , Glioblastoma/therapy , Hyperthermia, Induced , Laser Therapy , Humans , Magnetic Resonance Imaging , Male , Middle Aged
3.
J Physiol ; 597(8): 2225-2251, 2019 04.
Article in English | MEDLINE | ID: mdl-30707772

ABSTRACT

KEY POINTS: The embryonic PHOX2B-progenitor domain generates neuronal and glial cells which together are involved in chemosensory control of breathing and sleep homeostasis. Ablating PHOX2B-derived astrocytes significantly contributes to secondary hypoxic respiratory depression as well as abnormalities in sleep homeostasis. PHOX2B-derived astrocyte ablation results in axonal pathologies in the retrotrapezoid nucleus. ABSTRACT: We identify in mice a population of ∼800 retrotrapezoid nucleus (RTN) astrocytes derived from PHOX2B-positive, OLIG3-negative progenitor cells, that interact with PHOX2B-expressing RTN chemosensory neurons. PHOX2B-derived astrocyte ablation during early life results in adult-onset O2 chemoreflex deficiency. These animals also display changes in sleep homeostasis, including fragmented sleep and disturbances in delta power after sleep deprivation, all without observable changes in anxiety or social behaviours. Ultrastructural evaluation of the RTN demonstrates that PHOX2B-derived astrocyte ablation results in features characteristic of degenerative neuro-axonal dystrophy, including abnormally dilated axon terminals and increased amounts of synapses containing autophagic vacuoles/phagosomes. We conclude that PHOX2B-derived astrocytes are necessary for maintaining a functional O2 chemosensory reflex in the adult, modulate sleep homeostasis, and are key regulators of synaptic integrity in the RTN region, which is necessary for the chemosensory control of breathing. These data also highlight how defects in embryonic development may manifest as neurodegenerative pathology in an adult.


Subject(s)
Astrocytes/physiology , Homeodomain Proteins/physiology , Respiration , Sleep/physiology , Transcription Factors/physiology , Animals , Cell Differentiation , Embryonic Stem Cells/cytology , Homeostasis , Mice, Transgenic , Neurons/physiology
4.
Am J Pathol ; 189(2): 426-439, 2019 02.
Article in English | MEDLINE | ID: mdl-30579783

ABSTRACT

Mounting evidence in the literature suggests that RNA-RNA binding protein aggregations can disturb neuronal homeostasis and lead to symptoms associated with normal aging as well as dementia. The specific ablation of cyclin A2 in adult neurons results in neuronal polyribosome aggregations and learning and memory deficits. Detailed histologic and ultrastructural assays of aged mice revealed that post-mitotic hippocampal pyramidal neurons maintain cyclin A2 expression and that proliferative cells in the dentate subgranular zone express cyclin A2. Cyclin A2 loss early during neural development inhibited hippocampal development through canonical/cell-cycle mechanisms, including prolonged cell cycle timing in embryonic hippocampal progenitor cells. However, in mature neurons, cyclin A2 colocalized with dendritic rRNA. Cyclin A2 ablation in adult hippocampus resulted in decreased synaptic density in the hippocampus as well as in accumulation of rRNA granules in dendrite shafts. We conclude that cyclin A2 functions in a noncanonical/non-cell cycle regulatory role to maintain adult pyramidal neuron ribostasis.


Subject(s)
Aging , Cyclin A2/deficiency , Cytoplasmic Granules , Hippocampus , Pyramidal Cells , RNA, Ribosomal/metabolism , Aging/genetics , Aging/metabolism , Aging/pathology , Animals , Animals, Genetically Modified , Cell Cycle , Cyclin A2/metabolism , Cytoplasmic Granules/genetics , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/pathology , Hippocampus/metabolism , Hippocampus/pathology , Mice , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , RNA, Ribosomal/genetics , Synapses/genetics , Synapses/metabolism , Synapses/pathology
5.
Dev Neurobiol ; 78(11): 1146-1167, 2018 11.
Article in English | MEDLINE | ID: mdl-30136762

ABSTRACT

The emergence of systems neuroscience tools requires parallel generation of objective analytical workflows for experimental neuropathology. We developed an objective analytical workflow that we used to determine how specific autonomic neural lineages change during postnatal development. While a wealth of knowledge exists regarding postnatal alterations in respiratory neural function, how these neural circuits change and develop in the weeks following birth remains less clear. In this study, we developed our workflow by combining genetic mouse modeling and quantitative immunofluorescent confocal microscopy and used this to examine the postnatal development of neural circuits derived from the transcription factors NKX2.2 and OLIG3 into three medullary respiratory nuclei. Our automated FIJI-based image analysis workflow rapidly and objectively quantified synaptic puncta in user-defined anatomic regions. Using our objective workflow, we found that the density and estimated total number of Nkx2.2-derived afferents into the pre-Bötzinger Complex significantly decreased with postnatal age during the first three weeks of postnatal life. These data indicate that Nkx2.2-derived structures differentially influence pre-Bötzinger Complex respiratory oscillations at different stages of postnatal development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Medulla Oblongata/physiology , Nerve Net/physiology , Neurons/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Homeobox Protein Nkx-2.2 , Mice, Transgenic , Respiration/genetics
6.
PLoS One ; 12(3): e0170991, 2017.
Article in English | MEDLINE | ID: mdl-28282372

ABSTRACT

Multiplexed immunofluorescent testing has not entered into diagnostic neuropathology due to the presence of several technical barriers, amongst which includes autofluorescence. This study presents the implementation of a methodology capable of overcoming the visual challenges of fluorescent microscopy for diagnostic neuropathology by using automated digital image analysis, with long term goal of providing unbiased quantitative analyses of multiplexed biomarkers for solid tissue neuropathology. In this study, we validated PTBP1, a putative biomarker for glioma, and tested the extent to which immunofluorescent microscopy combined with automated and unbiased image analysis would permit the utility of PTBP1 as a biomarker to distinguish diagnostically challenging surgical biopsies. As a paradigm, we utilized second resections from patients diagnosed either with reactive brain changes (pseudoprogression) and recurrent glioblastoma (true progression). Our image analysis workflow was capable of removing background autofluorescence and permitted quantification of DAPI-PTBP1 positive cells. PTBP1-positive nuclei, and the mean intensity value of PTBP1 signal in cells. Traditional pathological interpretation was unable to distinguish between groups due to unacceptably high discordance rates amongst expert neuropathologists. Our data demonstrated that recurrent glioblastoma showed more DAPI-PTBP1 positive cells and a higher mean intensity value of PTBP1 signal compared to resections from second surgeries that showed only reactive gliosis. Our work demonstrates the potential of utilizing automated image analysis to overcome the challenges of implementing fluorescent microscopy in diagnostic neuropathology.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Microscopy, Fluorescence , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Adolescent , Adult , Aged , Animals , Antibodies, Monoclonal/immunology , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Female , Glioma/diagnosis , Glioma/genetics , Glioma/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/antagonists & inhibitors , Heterogeneous-Nuclear Ribonucleoproteins/immunology , Humans , Image Processing, Computer-Assisted , Male , Mice , Middle Aged , Neoplasm Recurrence, Local , Polypyrimidine Tract-Binding Protein/antagonists & inhibitors , Polypyrimidine Tract-Binding Protein/immunology , RNA Interference , Retrospective Studies , Young Adult
7.
Aging (Albany NY) ; 8(7): 1540-70, 2016 07.
Article in English | MEDLINE | ID: mdl-27425845

ABSTRACT

Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.


Subject(s)
Aging/physiology , Brain/metabolism , Cell Cycle/genetics , Cyclin A2/metabolism , Neurons/metabolism , Animals , Behavior, Animal/physiology , Conditioning, Psychological/physiology , Cyclin A2/genetics , DNA Repair , Hand Strength/physiology , Mice , Mice, Transgenic , Models, Biological , Motor Skills/physiology , Social Behavior , Stem Cell Niche
8.
J Neurovirol ; 22(5): 683-687, 2016 10.
Article in English | MEDLINE | ID: mdl-27273076

ABSTRACT

Progressive multifocal leukoencephalopathy (PML) is a viral demyelinating disease due to the reactivation of the JC virus (JCV), which usually occurs in the context of immunosuppression in HIV infection, malignancy, or in patients on disease modifying therapy for autoimmune diseases, such as multiple sclerosis (MS) and Crohn's disease. Notably, there is growing recognition that PML can occur in patients with transient immune dysfunction. Here, we present a case of a 55-year-old man without history of immunosuppression or evidence of ICL who was diagnosed with PML on brain biopsy. We will discuss the potential etiologies of mild and transient immunosuppression that can lead to PML with non-apparent immunosuppression.


Subject(s)
Brain/pathology , Cognitive Dysfunction/pathology , Diplopia/pathology , Leukoencephalopathy, Progressive Multifocal/pathology , Urinary Incontinence/pathology , Vertigo/pathology , Brain/diagnostic imaging , Brain/immunology , Brain/virology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/immunology , Cognitive Dysfunction/virology , Diplopia/diagnostic imaging , Diplopia/immunology , Diplopia/virology , Disease Progression , Fatal Outcome , Humans , Immunocompetence , JC Virus/immunology , JC Virus/isolation & purification , Leukoencephalopathy, Progressive Multifocal/diagnostic imaging , Leukoencephalopathy, Progressive Multifocal/immunology , Leukoencephalopathy, Progressive Multifocal/virology , Male , Middle Aged , Urinary Incontinence/diagnostic imaging , Urinary Incontinence/immunology , Urinary Incontinence/virology , Vertigo/diagnostic imaging , Vertigo/immunology , Vertigo/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...