Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sci Rep ; 14(1): 7421, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548824

ABSTRACT

Radix Fici Simplicissimae (RFS) is widely studied, and is in demand for its value in medicines and food products, with increased scientific focus on its cultivation and breeding. We used ultra-high-performance liquid chromatography quadrupole-orbitrap mass spectrometry-based metabolomics to elucidate the similarities and differences in phytochemical compositions of wild Radix Fici Simplicissimae (WRFS) and cultivated Radix Fici Simplicissimae (CRFS). Untargeted metabolomic analysis was performed with multivariate statistical analysis and heat maps to identify the differences. Eighty one compounds were identified from WRFS and CRFS samples. Principal component analysis and orthogonal partial least squares discrimination analysis indicated that mass spectrometry could effectively distinguish WRFS from CRFS. Among these, 17 potential biomarkers with high metabolic contents could distinguish between the two varieties, including seven phenylpropanoids, three flavonoids, one flavonol, one alkaloid, one glycoside, and four organic acids. Notably, psoralen, apigenin, and bergapten, essential metabolites that play a substantial pharmacological role in RFS, are upregulated in WRFS. WRFS and CRFS are rich in phytochemicals and are similar in terms of the compounds they contain. These findings highlight the effects of different growth environments and drug varieties on secondary metabolite compositions and provide support for targeted breeding for improved CRFS varieties.


Subject(s)
Drugs, Chinese Herbal , Plant Breeding , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Multivariate Analysis , Drugs, Chinese Herbal/chemistry , Metabolomics/methods
2.
Biomed Chromatogr ; 38(6): e5865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38514246

ABSTRACT

The aim of this work was to explore the differences between various pharmaceutical processes in combined solutions of a single decoction (QGHBY) and a combined decoction (QGHJY) of Qi-Ge decoction from the perspective of chemical composition changes, so as to further guide the clinical application of drugs. A combined solution of a single decoction and a combined decoction of Astragali Radix, Puerariae Lobatae Radix and Citri Reticulatae Chachiensis Pericarpium was prepared with the same technological parameters. The chemical components of the two were detected and identified based on UPLC-Q-TOF/MS, and the different components were determined by principal component analysis. Eighty-eight compounds were identified in the pharmaceutical solution of Qi-Ge decoction. Principal component analysis revealed 11 different components of QGHBY and QGHJY with the conditions of Variable Importance in Projection (VIP) ≥ 1, fold change ≥ 2 and p < 0.05, among which hesperidin, hesperitin, isosinensetin, sinensetin and 5-demethylnobiletin were the components of Citri Reticulatae Chachiensis Pericarpium. The levels of these 11 different components in QGHJY were higher than those of QGHBY. The combined decoction is beneficial for the dissolution of flavonoids and other chemical components, and there is a significant difference in the content of chemical components between modern herbal concentrate granules and traditional decoctions.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Principal Component Analysis , Flavonoids/analysis , Flavonoids/chemistry
3.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38253409

ABSTRACT

AIMS: To examine the influence of GED on the gut microbiota and metabolites using a bilateral ovariectomized (OVX) rat model. We tried to elucidate the underlying mechanisms of GED in the treatment of menopausal hot flashes. METHODS AND RESULTS: 16S rRNA sequencing, metabonomics, molecular biological analysis, and fecal microbiota transplantation (FMT) were conducted to elucidate the mechanisms by which GED regulates the gut microbiota. GED significantly reduced OVX-induced hot flashes and improved disturbances in the gut microbiota metabolites. Moreover, FMT validated that the gut microbiota can trigger hot flashes, while GED can alleviate hot flash symptoms by modulating the composition of the gut microbiota. Specifically, GED upregulated the abundance of Blautia, thereby increasing l(+)-ornithine levels for the treatment of menopausal hot flashes. Additionally, GED affected endothelial nitric oxide synthase and heat shock protein 70 (HSP70) levels in the hypothalamic preoptic area by changing the gut microbiota composition. CONCLUSIONS: Our study illuminated the underlying mechanisms by which GED attenuated the hot flashes through modulation of the gut microbiota and explored the regulatory role of the gut microbiota on HSP70 expression in the preoptic anterior hypothalamus, thereby establishing a foundation for further exploration of the role of the gut-brain axis in hot flashes.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Hot Flashes , Menopause , Animals , Gastrointestinal Microbiome/drug effects , Hot Flashes/metabolism , Hot Flashes/drug therapy , Rats , Female , Drugs, Chinese Herbal/pharmacology , Fecal Microbiota Transplantation , Ovariectomy , Rats, Sprague-Dawley , RNA, Ribosomal, 16S/genetics , Metabolome/drug effects
4.
Ann Med ; 55(1): 2200258, 2023 12.
Article in English | MEDLINE | ID: mdl-37096878

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD), a chronic and progressive liver disease, often causes steatosis and steatohepatitis. Qi-Ge decoction (QGD) shows a good effect against NAFLD in the clinic. But the molecular mechanism for QGD in improving NAFLD is unknown. PURPOSE: This study explored the molecular mechanism of QGD in NAFLD model rats using comprehensive network pharmacology, molecular docking and in vivo verification strategies. METHODS: Active components and targets of QGD were obtained from public database. The overlapped genes between QGD and NAFLD targets were analyzed by enrichment analysis. Active components and targets were used to predict molecular docking analysis. Finally, seven key targets were screened out and the gene expression were verified in the NAFLD rat's liver tissues after QGD treatment. RESULTS: Fifty-eight common QGD therapeutic targets were associated with NAFLD. Molecular docking demonstrated that seven targets had strong binding ability for the corresponding active ingredients. GO analysis identified 18 biological process entries, which were mainly related to regulation of lipid storage, lipid localization and peptide transport. KEGG analysis identified multiple signaling pathways, which were mainly associated with tumor necrosis factor signaling and NAFLD. In vivo data confirmed that the effect of QGD in the treatment of NAFLD was mainly exerted through improving liver steatosis and inflammatory cell infiltration. Additionally, QGD upregulated the expression of MAPK8 and ESR1 and downregulated the transcriptional expression of IL6, VEGFA, CASP3, EGFR and MYC. These targets may affect lipid metabolism by regulating lipid storage and inflammation. CONCLUSION: The integration of results obtained in silico and in vivo indicated that QGD regulates multiple targets, biological processes and signaling pathways in NAFLD, which may represent a complex molecular mechanism by which QGD improves NAFLD.Key messagesQGD intervention is related to multiple biological processes such as inflammation, oxidation and cell apoptosis in NAFLD.Lipid and atherosclerosis, TNF signaling pathway, IL-17 signaling pathway, non-alcoholic fatty liver disease and AGE-RAGE signaling pathway in diabetic complications are the main pathways for QGD intervention NAFLD.The active components of QGD can form good binding with relevant target proteins through intermolecular forces, exhibiting excellent docking activity.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Rats , Molecular Docking Simulation , Qi , Inflammation , Lipids
5.
Biomed Chromatogr ; 37(5): e5595, 2023 May.
Article in English | MEDLINE | ID: mdl-36734105

ABSTRACT

The mechanism underlying traditional Chinese medicine (TCM) compatibility is difficult to understand. This study combined lipidomics and efficacy-oriented compatibility to explore underlying compatibility mechanisms of Qi Ge decoction (QG) for improving lipid metabolism in hyperlipidemic rats. The QG was divided into three groups according to the efficacy group strategy: the Huangqi-Gegen (HG), Chenpi (CP), and QG groups. Hyperlipidemic rats were treated with QG, HG, CP, or atorvastatin for 3 weeks. The mass spectral data of widely targeted lipidomics were used to evaluate lipid changes. Principal component analysis and orthogonal partial least squares discriminant analysis were used to assess the lipidomic differences between the groups. MetaboAnalyst 5.0 was used to explore metabolic pathways. Compared with the model group, serum cholesterol, triglyceride, and hepatic steatosis were significantly reduced by QG, whereas HG and CP had no significant effects on these indexes. Lipidomics showed that QG, HG, and CP back-regulated 60, 11, and 14 lipids, respectively. Compared with HG and CP, QG had more metabolic targets in diglycerides, triglycerides, ceramides, and phosphatidylethanolamines. Pathway analysis indicated that QG mainly regulated glycerophospholipid and glycerolipid metabolism. This study provided a new method of combining lipidomics and efficacy-oriented compatibility for exploring the scientific connotation of TCM compatibility.


Subject(s)
Drugs, Chinese Herbal , Lipidomics , Rats , Animals , Rats, Sprague-Dawley , Qi , Lipid Metabolism , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional
6.
Article in English | MEDLINE | ID: mdl-36452137

ABSTRACT

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing as obesity and diabetes become more common. There are no drugs approved for NAFLD yet. Qige decoction (QGD), a traditional Chinese medicine (TCM) formula, is used for NAFLD and hyperlipidemia treatment in TCM and has shown hypolipidemic and hepatoprotective effects. This study tried to interpret the pharmacology and molecular mechanisms of QGD in NAFLD rats. Firstly, the therapeutic effects of QGD on high-fat diet (HFD)-induced NAFLD rats were evaluated. Then, integration of lipidomics and transcriptomics was conducted to explore the possible pathways and targets of QGD against NAFLD. QGD at low dosage (QGL) administration reduced serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) (P < 0.05). Liver histopathology indicated that QGL could alleviate hepatic steatosis. The main differential lipids (DELs) affected by QGD were glycerolipids. KEGG enrichment analysis suggested that the main pathways by which QGD improved NAFLD may be cholesterol metabolism, glycerolipid metabolism, and insulin resistance. Transcriptome sequencing identified 179 upregulated and 194 downregulated mRNAs after QGD treatment. An interaction network based on DELs and differential genes (DEGs) suggested that QGD inhibited hepatic steatosis mainly by reducing hepatic insulin resistance and triglyceride biosynthesis via the PPP1R3C/SIK1/CRTC2 and PPP1R3C/SIK1/SREBP1 signal axis, respectively. These findings indicated that QGD could protect against NAFLD induced by HFD. The improvement of hepatic insulin resistance and the reduction of triglyceride biosynthesis might be the potential mechanisms.

7.
Medicine (Baltimore) ; 100(38): e27050, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34559098

ABSTRACT

BACKGROUND: The aim of this study was to determine the efficacy and safety of acupuncture treatment (AT) or acupuncture plus conventional medicine (CM) versus CM alone using a meta-analysis of all published randomized controlled trials (RCTs) for nonalcoholic fatty liver disease (NAFLD). METHODS: Eight databases were searched independently from inception to April 30, 2020. RCTs were included if they contained reports on the use acupuncture or the use of acupuncture combined with CM and compared with the use of CM. Summary odds ratio (OR) and 95% confidence intervals (CIs) were used to calculate the overall clinical efficacy. Secondary outcomes, namely aspartate aminotransferase, alanine aminotransferase, total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and body mass index, were calculated by mean difference with 95% CIs. RESULTS: After the final screening, 8 RCTs with 939 patients were included. This meta-analysis showed that AT was superior to CM in improving overall clinical efficacy (OR = 3.19, 95% CI: 2.06-4.92, P  < .00001). In addition, AT plus CM could significantly improve overall clinical efficacy compared to treatment with CM alone (OR = 5.11, 95% CI: 2.43-10.75, P  < .0001). Moreover, the benefits were also demonstrated in other outcomes, including alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol indexes. However, AT plus CM could not decrease body mass index levels in comparison with CM. The safety profile of Acupuncture therapy was satisfactory. Taichong, Zusanli, Fenglong, and Sanyinjiao were major acupoints on NAFLD treatment. CONCLUSION: Acupuncture may be effective and safe for treatment of NAFLD. However, due to insufficient methodological quality and sample size, further high-quality studies are needed.


Subject(s)
Acupuncture Therapy , Non-alcoholic Fatty Liver Disease/therapy , Humans , Randomized Controlled Trials as Topic
8.
Phytother Res ; 35(10): 5623-5633, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34327759

ABSTRACT

The dysregulation of cholesterol metabolism is a high-risk factor for non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and atherosclerosis (AS). Cholesterol transport maintains whole-body cholesterol homeostasis. Low-density apolipoprotein receptor (LDLR) mediates cholesterol uptake in cells and plays an important role in the primary route of circulatory cholesterol clearance in liver cells. Caveolins 1 is an integral membrane protein and shuttle between the cytoplasm and cell membrane. Caveolins 1 not only plays a role in promoting cholesterol absorption in cells but also in the transport of cellular cholesterol efflux by interacting with the ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI). These proteins, which are associated with reverse cholesterol transport (RCT), are potential therapeutic targets for NAFLD and AS. Many studies have indicated that natural products have lipid-lowering effects. Moreover, natural molecules, derived from natural products, have the potential to be developed into novel drugs. However, the mechanisms underlying the regulation of cholesterol transport by natural molecules have not yet been adequately investigated. In this review, we briefly describe the process of cholesterol transport and summarize the mechanisms by which molecules regulate cholesterol transport. This article provides an overview of recent studies and focuses on the potential therapeutic effects of natural molecules; however, further high-quality studies are needed to firmly establish the clinical efficacies of natural molecules.


Subject(s)
ATP-Binding Cassette Transporters , Atherosclerosis , ATP Binding Cassette Transporter 1/metabolism , ATP-Binding Cassette Transporters/metabolism , Atherosclerosis/drug therapy , Biological Transport , Cholesterol , Humans , Scavenger Receptors, Class B/metabolism
9.
DNA Cell Biol ; 39(9): 1573-1582, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32678986

ABSTRACT

Many immune cells participate in the pathogenesis of ulcerative colitis (UC), and fatty acid metabolism (FAM) is reported to supporting their cell-specific functions and proliferation, but the underlying mechanism is unclear. This study aimed to investigate the relationship between FAM and inflammation in colon tissues and identify potential therapeutic targets for regulating immune response. A total of 870 different expression genes (DEGs), 304 immunity-related DEGs, and 11 FAM-related DEGs were obtained, gene ontology analysis results showed that immune DEGs were significantly enriched in neutrophil migration, positive regulation of T cell activation. Fifteen types of immune cells were identified in inflamed colon tissues. Five FAM-related DEGs (ACOX1, ACSL4, ELOVL5, FADS2, and SCD) were highly correlated with immunity-related DEGs, and ACSL4, ELOVL5, and FADS2 were significantly upregulated in immune cells, while SCD is downregulated. Five FAM-related DEGs were highly correlated with immune cells. The study promotes the understanding of the pathogenesis of FAM in UC immune cells.


Subject(s)
Colitis, Ulcerative/genetics , Fatty Acids/metabolism , Gene Regulatory Networks , Transcriptome , Acyl-CoA Oxidase/genetics , Acyl-CoA Oxidase/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Colitis, Ulcerative/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Lymphocytes/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
10.
Biomed Chromatogr ; 34(4): e4795, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31967660

ABSTRACT

In this study, we focused on studying the changes in urine metabolites in hyperlipidemic rats using ultra-performance liquid chromatography coupled with quadrupole time-of-fight mass spectrometry (UPLC-Q-TOF/MS) and metabolomics, as well as the effect of Citri Reticulatae Chachiensis Pericarpium (CRCP) on hyperlipidemia. These urine samples were examined by UPLC-Q-TOF/MS to obtain MS data. The MS data were analyzed by principal component analysis and partial least squares-discriminant analysis to identify the differential metabolites. CRCP reduced the body weight and levels of triglycerides, total cholesterol and low-density lipoprotein cholesterol and abnormally decreased high-density lipoprotein cholesterol in hyperlipidemic rats, which were significantly raised by a high-fat diet. Twenty-seven potential biomarkers were identified within the complex sample matrix of urine. Fourteen biomarkers increased in the hyperlipidemia rats compared with normal rats. Meanwhile, 13 biomarkers decreased. CRCP reversed abnormal changes in biomarkers, including 5-l-glutamyl-taurine, 5-aminopentanoic acid, cis-4-octenedioic acid and 2-octenedioic acid. These biomarkers show that hyperlipidemia is related to the metabolic pathways of taurine and hypotaurine metabolism, fatty acid biosynthesis, and arginine and proline metabolism. CRCP mainly prevents hyperlipidemia by intervening in these metabolic pathways.


Subject(s)
Citrus/chemistry , Diet, High-Fat , Metabolome/drug effects , Plant Preparations , Protective Agents , Animals , Biomarkers/urine , Fruit/chemistry , Male , Metabolomics , Plant Preparations/chemistry , Plant Preparations/pharmacology , Protective Agents/chemistry , Protective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Reproducibility of Results
11.
J Pharm Biomed Anal ; 171: 218-231, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31072532

ABSTRACT

Using ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry (UPLC-QTOFMS) based metabolomics, we focused on developing a method for the comprehensive distinction between Citri Reticulatae Blanco Pericarpium(CRBP) and Citri Reticulatae Chachi Pericarpium (CRCP), as well as the CRCP within different storage years in this study. Through this, we hope to enhance Citri Reticulatae Pericarpium (CRP) Quality Control system. Using UNIFI software and an online database identified chemical components in the 3-30 years CRCP(40 batches) and CRBP (10 batches)samples, and multivariate statistical analysis methods and heat-map were applied to distinguish between CRCP and CRBP and CRCP in different storage years. The results showed that a total of 92 compounds were identified from CRCP and CRBP samples, most of which were flavonoids. Principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) indicated that it can effectively distinguish between CRBP and CRCP and various storage years CRCP, and 19 metabolites were identified as potential markers for distinguishing between CRBP and CRCP, and 15 potential markers showed a higher level of CRCP than CRBP. At the same time, 31 metabolites were identified to distinguish CRCP in different storage years, metabolite levels increased in 3-10 years and decreased after 15-30 years. Therefore, this approach can effectively distinguish between CRCP and CRBP and CRCP with different storage years, and may also provide a feasible strategy for the certification of Chinese herbal medicines from different species and storage years.


Subject(s)
Chromatography, High Pressure Liquid/methods , Citrus/chemistry , Drugs, Chinese Herbal/chemistry , Fruit/chemistry , Metabolomics/methods , Tandem Mass Spectrometry/methods , Citrus/standards , Drug Storage , Drugs, Chinese Herbal/standards , Fruit/standards , Quality Control
12.
Article in English | MEDLINE | ID: mdl-31976000

ABSTRACT

Qi-Ge decoction (QGD), which is derived from the Huangqi Gegen decoction, contains three traditional Chinese herbs: Astragalus membranaceus (Huangqi), Pueraria lobata (Gegen), and Citri Reticulatae Blanco Pericarpium (Chenpi). Gastric mucosal damage caused by ethanol was prevented and alleviated by QGD. However, the role of QGD in protecting the liver from toxins has not been reported. High-performance liquid chromatography with diode-array detection was used to qualitatively analyze QGD. Positive control (silymarin 100 mg/kg/day), QGD (20, 10, or 5 g/kg/day), and Nrf2 inhibitor brusatol (0.4 mg/kg/2 d) were administered to rats for 7 days, and then, liver injury was induced by injecting 2 mL/kg 25% CCl4. After 24 h, blood and liver were collected for analysis and evaluation. QGD was found to contain 12 main components including calycosin, puerarin, and hesperidin. QGD treatment significantly reduced liver damage and decreased serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase activities. QGD increased superoxide dismutase and catalase activities, and glutathione levels, but decreased malondialdehyde levels in livers from CCl4-treated rats. Compared to rats treated with CCl4 alone, after QGD administration, mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 were increased, while those of Kelch-like ECH-related protein 1 (Keap1) and cytochrome P450 (CYP)2E1 were decreased. However, these improvements in QGD were reversed by brusatol. In conclusion, QGD can achieve its hepatoprotective effect through an antioxidant mechanism by activating the Nrf2 pathway.

13.
Mol Neurobiol ; 53(1): 83-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25404088

ABSTRACT

ß-asarone, a major component of Acorus tatarinowii Schott, has positive effects in neurodegeneration disease, however, its effect on the Parkinson's disease (PD) remains unclear. In this study, the effects of ß-asarone on behavioral tests, neurotransmitters, tyrosine hydroxylase (TH), and α-synuclein (α-syn) were investigated in 6-hydroxydopamine (6-OHDA) induced rats. Furthermore, the JNK/Bcl-2/Beclin-1 autophagy pathway was also studied. The results showed that ß-asarone improved the behavioral symptoms of rats in the open field, rotarod test, initiation time, and stepping time. And it increased the HVA, Dopacl, and 5-HIAA levels in striatum but not the DA and 5-HT levels. After administration of ß-asarone, the TH level was elevated but the α-syn was declined in rats. It inhibited the expressions of LC3-II, but increased the p62 expression in SN4741 cells. Moreover, it affected the expressions of Beclin-1, Bcl-2, JNK, and p-JNK in vivo. We deduced that ß-asarone may firstly downregulate expressions of JNK and p-JNK, and then indirectly increase the expression of Bcl-2. And the function of Beclin-1 could be inhibited, which could inhibit autophagy activation. Collectively, all data indicated that ß-asarone may be explored as a potential therapeutic agent in PD therapy.


Subject(s)
Anisoles/pharmacology , Corpus Striatum/drug effects , Dopamine/pharmacology , MAP Kinase Signaling System/drug effects , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/metabolism , Allylbenzene Derivatives , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Beclin-1 , Corpus Striatum/metabolism , Male , Oxidopamine/metabolism , Parkinsonian Disorders/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley
14.
Int J Dev Neurosci ; 36: 32-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24814667

ABSTRACT

Immediate neurochemical alterations produced by 6-OHDA could explain the general toxic pattern in the central nervous system. However, no evidences describe the effects of 6-OHDA on early changes of neurotransmitters in rats' striatum, cortex and hippocampus. In our study, unilateral 6-OHDA injection into medial forebrain bundle (MFB) was used in rats, then five neurotransmitters were analyzed at 3, 6, 12, 24, 48 and 72 h, respectively. Results showed that 6-OHDA injection caused a sharp decline of striatal dopamine (DA) levels in the first 12h followed by a further reduction between 12 and 48 h. However, striatal levels of homovanillic acid (HVA) were stable in the first 12h and showed a marked reduction between 12 and 24h. Striatal levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) decreased linearly for 72 h, whereas levels of norepinephrine (NE) showed a slight reduction in the first 48 h, and returned back to normal afterwards. Striatal HVA/DA ratio increased significantly in the first 12h, but 5-HIAA/5-HT ratio showed a sharp increase between 12 and 72 h. Besides, neurochemical alterations were also found in hippocampus and cortex, and the correlations of neurotransmitters were analyzed. Our study indicated that NE system had little influence in the early phase of 6-OHDA injection, moreover, early neurochemical alterations were involved with striatum, hippocampus and cortex.


Subject(s)
Adrenergic Agents/pharmacology , Brain Chemistry/physiology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Hippocampus/metabolism , Oxidopamine/pharmacology , Analysis of Variance , Animals , Cerebral Cortex/metabolism , Chromatography, High Pressure Liquid , Female , Neurochemistry , Neurotransmitter Agents/metabolism , Rats , Rats, Sprague-Dawley , Time Factors
15.
Cell Biol Int ; 36(11): 1043-8, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22917477

ABSTRACT

Autophagy is usually up-regulated to provide more ATP in response to starvation or OGD (oxygen-glucose deprivation), but the relationship between autophagy and ATP, [Ca2+]i (intracellular free Ca2+ concentration) or MMP (mitochondrial membrane potential) during reoxygenation is not yet fully clear. The role of autophagy is unknown in PC12 cells subjected to 2 h OGD with different time points of reoxygenation. In the present study, we showed that Beclin-1 was up-regulated beginning at 0 h reoxygenation peaking at 24 h and lasting for 48 h. Cell viability was decreased from 0 to 48 h reoxygenation, reaching its minimum at 10 h reoxygenation. ATP was decreased from 0 to 10 h reoxygenation, reaching its minimum at 4 h reoxygenation. A significant negative correlation was observed between ATP and Beclin-1 (r = -0.61, P<0.05) at 0 h reoxygenation, but ATP was not significant related (r = 0.24, P>0.05) to Beclin-1 at 24 h reoxygenation. Besides, Nimodipine, a calcium antagonist, significantly reduced [Ca2+]i and Beclin-1, but increased MMP in OGD/R-treated cells. At 24 h reoxygenation, Beclin-1 expression reached its maximum, cell viability continued to increase, and ATP was higher than that before OGD. These results suggest that energy metabolism dysfunction can induce autophagy during OGD in PC12 cells. Increased [Ca2+]i and decreased MMP may induce autophagy during reoxygenation in PC12 cells. Autophagy may be a protective effect on PC12 cells treated with different time points of reoxygenation after 2 h OGD.


Subject(s)
Adenosine Triphosphate/metabolism , Apoptosis Regulatory Proteins/metabolism , Calcium/metabolism , Membrane Potential, Mitochondrial , Oxygen/metabolism , Animals , Autophagy , Beclin-1 , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium Channels/metabolism , Cell Hypoxia , Cell Survival , Energy Metabolism , Flow Cytometry , Glucose/metabolism , Nimodipine/pharmacology , PC12 Cells , Rats , Time Factors
16.
Zhongguo Zhong Yao Za Zhi ; 33(18): 2090-3, 2008 Sep.
Article in Chinese | MEDLINE | ID: mdl-19160791

ABSTRACT

OBJECTIVE: To establish HPLC fingerprint of Prunella vulgarise for quality control of the herbal medicine. METHOD: A sunfire C18 analytical column was used. The mobile phase A was 1% acetic acid, and mobile phase B was methanol. The elution was in gradient mode and detection wavelength was set at 290 nm. The flow rate was 1.0 mL x min(-1) and the column temperature at 30 degrees C. The analysis time was 60 min. RESULT: The similarity of 10 batches of P. vulgaris was not lower than 0.810. The fingerprints of the herbal medicine were classified P. vulgaris on the results of cluster analysis. CONCLUSION: This method is available for quality evaluation and control the quality of P. vulgaris.


Subject(s)
Chromatography, High Pressure Liquid/methods , Prunella/chemistry , Drugs, Chinese Herbal/chemistry
17.
Zhongguo Zhong Yao Za Zhi ; 31(23): 1950-2, 2006 Dec.
Article in Chinese | MEDLINE | ID: mdl-17348186

ABSTRACT

OBJECTIVE: Investigate into transport rate and retention rate transference of principal effective constituent in Shujin Kechuang capsule, a new development Chinese patent medicine for theraphy asthma. METHOD: HPLC was applied to analyze the content of ephedrine hydrochloride and honokiol and magnolol in crude drugs and 60% ethanol extracting solution and 25% concentrated solution,50% concentrated solution, 100% concentrated solution and finished product ( Shujin Kechuang capsule). RESULT: The transport rate of ephedrine hydrochloride and honokiol and magnolol is 56. 32%, 14. 43%, 14. 56% in the finished product respectively. CONCLUSION: should be concentrate and desiccation in the condition that decompress and low temperature.


Subject(s)
Drugs, Chinese Herbal/isolation & purification , Ephedra sinica/chemistry , Magnolia/chemistry , Plants, Medicinal/chemistry , Asthma/drug therapy , Biphenyl Compounds/analysis , Capsules , Chromatography, High Pressure Liquid , Drug Combinations , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Ephedrine/analysis , Lignans/analysis , Plant Structures/chemistry , Technology, Pharmaceutical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...