Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
1.
Mol Phylogenet Evol ; : 108120, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852907

ABSTRACT

Ochrophyta is a photosynthetic lineage that crowns the phylogenetic tree of stramenopiles, one of the major eukaryotic supergroups. Due to their ecological impact as a major primary producer, ochrophytes are relatively well-studied compared to the rest of the stramenopiles, yet their evolutionary relationships remain poorly understood. This is in part due to a number of missing lineages in large-scale multigene analyses, and an apparently rapid radiation leading to many short internodes between ochrophyte subgroups in the tree. These short internodes are also found across deep-branching lineages of stramenopiles with limited phylogenetic signal, leaving many relationships controversial overall. We have addressed this issue with other deep-branching stramenopiles recently, and now examine whether contentious relationships within the ochrophytes may be resolved with the help of filling in missing lineages in an updated phylogenomic dataset of ochrophytes, along with exploring various gene filtering criteria to identify the most phylogenetically informative genes. We generated ten new transcriptomes from various culture collections and a single-cell isolation from an environmental sample, added these to an existing phylogenomic dataset, and examined the effects of selecting genes with high phylogenetic signal or low phylogenetic noise. For some previously contentious relationships, we find a variety of analyses and gene filtering criteria consistently unite previously unstable groupings with strong statistical support. For example, we recovered a robust grouping of Eustigmatophyceae with Raphidophyceae-Phaeophyceae-Xanthophyceae while Olisthodiscophyceae formed a sister-lineage to Pinguiophyceae. Selecting genes with high phylogenetic signal or data quality recovered more stable topologies. Overall, we find that adding under-represented groups across different lineages is still crucial in resolving phylogenetic relationships, and discrete gene properties affect lineages of stramenopiles differently. This is something which may be explored to further our understanding of the molecular evolution of stramenopiles.

2.
J Eukaryot Microbiol ; : e13035, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825738

ABSTRACT

The phylum Parabasalia includes very diverse single-cell organisms that nevertheless share a distinctive set of morphological traits. Most are harmless or beneficial gut symbionts of animals, but some have turned into parasites in other body compartments, the most notorious example being Trichomonas vaginalis in humans. Parabasalians have garnered attention for their nutritional symbioses with termites, their modified anaerobic mitochondria (hydrogenosomes), their character evolution, and the wholly unique features of some species. The molecular revolution confirmed the monophyly of Parabasalia, but considerably changed our view of their internal relationships, prompting a comprehensive reclassification 14 years ago. This classification has remained authoritative for many subgroups despite a greatly expanded pool of available data, but the large number of species and sequences that have since come out allow for taxonomic refinements in certain lineages, which we undertake here. We aimed to introduce as little disruption as possible but at the same time ensure that most taxa are truly monophyletic, and that the larger clades are subdivided into meaningful units. In doing so, we also highlighted correlations between the phylogeny of parabasalians and that of their hosts.

3.
Mol Phylogenet Evol ; 196: 108086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677354

ABSTRACT

Dinoflagellates are diverse and ecologically important protists characterized by many morphological and molecular traits that set them apart from other eukaryotes. These features include, but are not limited to, massive genomes organized using bacterially-derived histone-like proteins (HLPs) and dinoflagellate viral nucleoproteins (DVNP) rather than histones, and a complex history of photobiology with many independent losses of photosynthesis, numerous cases of serial secondary and tertiary plastid gains, and the presence of horizontally acquired bacterial rhodopsins and type II RuBisCo. Elucidating how this all evolved depends on knowing the phylogenetic relationships between dinoflagellate lineages. Half of these species are heterotrophic, but existing molecular data is strongly biased toward the photosynthetic dinoflagellates due to their amenability to cultivation and prevalence in culture collections. These biases make it impossible to interpret the evolution of photosynthesis, but may also affect phylogenetic inferences that impact our understanding of character evolution. Here, we address this problem by isolating individual cells from the Salish Sea and using single cell, culture-free transcriptomics to expand molecular data for dinoflagellates to include 27 more heterotrophic taxa, resulting in a roughly balanced representation. Using these data, we performed a comprehensive search for proteins involved in chromatin packaging, plastid function, and photoactivity across all dinoflagellates. These searches reveal that 1) photosynthesis was lost at least 21 times, 2) two known types of HLP were horizontally acquired around the same time rather than sequentially as previously thought; 3) multiple rhodopsins are present across the dinoflagellates, acquired multiple times from different donors; 4) kleptoplastic species have nucleus-encoded genes for proteins targeted to their temporary plastids and they are derived from multiple lineages, and 5) warnowiids are the only heterotrophs that retain a whole photosystem, although some photosynthesis-related electron transport genes are widely retained in heterotrophs, likely as part of the iron-sulfur cluster pathway that persists in non-photosynthetic plastids.


Subject(s)
Dinoflagellida , Photosynthesis , Phylogeny , Dinoflagellida/genetics , Dinoflagellida/classification , Photosynthesis/genetics , Heterotrophic Processes/genetics , Biological Evolution , Evolution, Molecular , Plastids/genetics
4.
Curr Biol ; 34(8): 1810-1816.e4, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38608678

ABSTRACT

Coral reefs are a biodiversity hotspot,1,2 and the association between coral and intracellular dinoflagellates is a model for endosymbiosis.3,4 Recently, corals and related anthozoans have also been found to harbor another kind of endosymbiont, apicomplexans called corallicolids.5 Apicomplexans are a diverse lineage of obligate intracellular parasites6 that include human pathogens such as the malaria parasite, Plasmodium.7 Global environmental sequencing shows corallicolids are tightly associated with tropical and subtropical reef environments,5,8,9 where they infect diverse corals across a range of depths in many reef systems, and correlate with host mortality during bleaching events.10 All of this points to corallicolids being ecologically significant to coral reefs, but it is also possible they are even more widely distributed because most environmental sampling is biased against parasites that maintain a tight association with their hosts throughout their life cycle. We tested the global distribution of corallicolids using a more direct approach, by specifically targeting potential anthozoan host animals from cold/temperate marine waters outside the coral reef context. We found that corallicolids are in fact common in such hosts, in some cases at high frequency, and that they infect the same tissue as parasites from topical coral reefs. Parasite phylogeny suggests corallicolids move between hosts and habitats relatively frequently, but that biogeography is more conserved. Overall, these results greatly expand the range of corallicolids beyond coral reefs, suggesting they are globally distributed parasites of marine anthozoans, which also illustrates significant blind spots that result from strategies commonly used to sample microbial biodiversity.


Subject(s)
Anthozoa , Coral Reefs , Anthozoa/parasitology , Animals , Apicomplexa/physiology , Apicomplexa/genetics , Apicomplexa/classification , Symbiosis , Cold Temperature , Dinoflagellida/physiology , Dinoflagellida/genetics , Host-Parasite Interactions
5.
PLoS Genet ; 20(4): e1011218, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557755

ABSTRACT

Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 µm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.


Subject(s)
Chlorophyta , Giant Viruses , Giant Viruses/genetics , Phylogeny , Genome, Viral/genetics , Chlorophyta/genetics , Metagenomics , Bacteria/genetics
6.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38457644

ABSTRACT

Eupelagonemids, formerly known as Deep Sea Pelagic Diplonemids I (DSPD I), are among the most abundant and diverse heterotrophic protists in the deep ocean, but little else is known about their ecology, evolution, or biology in general. Originally recognized solely as a large clade of environmental ribosomal subunit RNA gene sequences (SSU rRNA), branching with a smaller sister group DSPD II, they were postulated to be diplonemids, a poorly studied branch of Euglenozoa. Although new diplonemids have been cultivated and studied in depth in recent years, the lack of cultured eupelagonemids has limited data to a handful of light micrographs, partial SSU rRNA gene sequences, a small number of genes from single amplified genomes, and only a single formal described species, Eupelagonema oceanica. To determine exactly where this clade goes in the tree of eukaryotes and begin to address the overall absence of biological information about this apparently ecologically important group, we conducted single-cell transcriptomics from two eupelagonemid cells. A SSU rRNA gene phylogeny shows that these two cells represent distinct subclades within eupelagonemids, each different from E. oceanica. Phylogenomic analysis based on a 125-gene matrix contrasts with the findings based on ecological survey data and shows eupelagonemids branch sister to the diplonemid subgroup Hemistasiidae.


Subject(s)
Euglenozoa , Eukaryota , Phylogeny , Eukaryota/genetics , Euglenozoa/genetics , RNA, Ribosomal , Oceans and Seas
7.
Eur J Protistol ; 94: 126065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492251

ABSTRACT

Extreme functional reduction of mitochondria has taken place in parallel in many distantly related lineages of eukaryotes, leading to a number of recurring metabolic states with variously lost electron transport chain (ETC) complexes, loss of the tricarboxylic acid (TCA) cycle, and/or loss of the mitochondrial genome. The resulting mitochondria-related organelles (MROs) are generally structurally reduced and in the most extreme cases barely recognizable features of the cell with no role in energy metabolism whatsoever (e.g., mitosomes, which generally only make iron-sulfur clusters). Recently, a wide diversity of MROs were discovered to be hiding in plain sight: in gregarine apicomplexans. This diverse group of invertebrate parasites has been known and observed for centuries, but until recent applications of culture-free genomics, their mitochondria were unremarkable. The genomics, however, showed that mitochondrial function has reduced in parallel in multiple gregarine lineages to several different endpoints, including the most reduced mitosomes. Here we review this remarkable case of parallel evolution of MROs, and some of the interesting questions this work raises.


Subject(s)
Apicomplexa , Mitochondria , Apicomplexa/genetics , Apicomplexa/physiology , Apicomplexa/classification , Mitochondria/genetics , Biological Evolution
8.
Mol Phylogenet Evol ; 195: 108060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485105

ABSTRACT

Apicomplexans are a diverse phylum of unicellular eukaryotes that share obligate relationships with terrestrial and aquatic animal hosts. Many well-studied apicomplexans are responsible for several deadly zoonotic and human diseases, most notably malaria caused by Plasmodium. Interest in the evolutionary origin of apicomplexans has also spurred recent work on other more deeply-branching lineages, especially gregarines and sister groups like squirmids and chrompodellids. But a full picture of apicomplexan evolution is still lacking several lineages, and one major, diverse lineage that is notably absent is the adeleorinids. Adeleorina apicomplexans comprises hundreds of described species that infect invertebrate and vertebrate hosts across the globe. Although historically considered coccidians, phylogenetic trees based on limited data have shown conflicting branch positions for this subgroup, leaving this question unresolved. Phylogenomic trees and large-scale analyses comparing cellular functions and metabolism between major subgroups of apicomplexans have not incorporated Adeleorina because only a handful of molecular markers and a couple organellar genomes are available, ultimately excluding this group from contributing to our understanding of apicomplexan evolution and biology. To address this gap, we have generated complete genomes from mitochondria and plastids, as well as multiple deep-coverage single-cell transcriptomes of nuclear genes from two Adeleorina species, Klossia helicina and Legerella nova, and inferred a 206-protein phylogenomic tree of Apicomplexa. We observed distinct structures reported in species descriptions as remnant host structures surrounding adeleorinid oocysts. Klossia helicina and L. nova branched, as expected, with monoxenous adeleorinids within the Adeleorina and their mitochondrial and plastid genomes exhibited similarity to published organellar adeleorinid genomes. We show with a phylogeneomic tree and subsequent phylogenomic analyses that Adeleorina are not closely related to any of the currently sampled apicomplexan subgroups, and instead fall as a sister to a large clade encompassing Coccidia, Protococcidia, Hematozoa, and Nephromycida, collectively. This resolves Adeleorina as a key independently-branching group, separate from coccidians, on the tree of Apicomplexa, which now has all known major lineages sampled.


Subject(s)
Apicomplexa , Genome, Plastid , Animals , Humans , Phylogeny , Plastids/genetics , Genome , Apicomplexa/genetics
9.
Nat Rev Genet ; 25(6): 416-430, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38263430

ABSTRACT

Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.


Subject(s)
Gene Transfer, Horizontal , Eukaryota/genetics , Symbiosis/genetics , Eukaryotic Cells/metabolism , Animals , Phagocytosis/genetics , Archaea/genetics , Evolution, Molecular , Models, Genetic
10.
Mol Phylogenet Evol ; 190: 107964, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951557

ABSTRACT

Unlike morphologically conspicuous ochrophytes, many flagellates belonging to basally branching stramenopiles are small and often overlooked. As a result, many of these lineages are known only through molecular surveys and identified as MArine STramenopiles (MAST), and remain largely uncharacterized at the cellular or genomic level. These likely phagotrophic flagellates are not only phylogenetically diverse, but also extremely abundant in some environments, making their characterization all the more important. MAST-6 is one example of a phylogenetically distinct group that has been known to be associated with sediments, but little else is known about it. Indeed, until the present study, only a single species from this group, Pseudophyllomitus vesiculosus (Pseudophyllomitidae), has been both formally described and associated with genomic information. Here, we describe four new species including two new genera of sediment-dwelling MAST-6, Vomastramonas tehuelche gen. et sp. nov., Mastreximonas tlaamin gen. et sp. nov., one undescribed Pseudophyllomitus sp., BSC2, and a new species belonging to Placididea, the potentially halotolerant Haloplacidia sinai sp. nov. We also provide two additional bikosian transcriptomes from a public culture collection, to allow for better phylogenetic reconstructions of deep-branching stramenopiles. With the SSU rRNA sequences of the new MAST-6 species, we investigate the phylogenetic diversity of the MAST-6 group and show a high relative abundance of MAST-6 related to M. tlaamin in samples across various depths and geographical locations. Using the new MAST-6 species, we also update the phylogenomic tree of stramenopiles, particularly focusing on the paraphyly of Bigyra.


Subject(s)
Stramenopiles , Phylogeny , RNA, Ribosomal
11.
Curr Biol ; 34(3): 594-605.e4, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38157859

ABSTRACT

Chlorophyll c is a key photosynthetic pigment that has been used historically to classify eukaryotic algae. Despite its importance in global photosynthetic productivity, the pathway for its biosynthesis has remained elusive. Here we define the CHLOROPHYLL C SYNTHASE (CHLCS) discovered through investigation of a dinoflagellate mutant deficient in chlorophyll c. CHLCSs are proteins with chlorophyll a/b binding and 2-oxoglutarate-Fe(II) dioxygenase (2OGD) domains found in peridinin-containing dinoflagellates; other chlorophyll c-containing algae utilize enzymes with only the 2OGD domain or an unknown synthase to produce chlorophyll c. 2OGD-containing synthases across dinoflagellate, diatom, cryptophyte, and haptophyte lineages form a monophyletic group, 8 members of which were also shown to produce chlorophyll c. Chlorophyll c1 to c2 ratios in marine algae are dictated in part by chlorophyll c synthases. CHLCS heterologously expressed in planta results in the accumulation of chlorophyll c1 and c2, demonstrating a path to augment plant pigment composition with algal counterparts.


Subject(s)
Chlorophyll , Dinoflagellida , Chlorophyll A , Proteins , Plants , Phylogeny
12.
Nat Commun ; 14(1): 7049, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923716

ABSTRACT

Microbial eukaryotes are important components of marine ecosystems, and the Marine Alveolates (MALVs) are consistently both abundant and diverse in global environmental sequencing surveys. MALVs are dinoflagellates that are thought to be parasites of other protists and animals, but the lack of data beyond ribosomal RNA gene sequences from all but a few described species means much of their biology and evolution remain unknown. Using single-cell transcriptomes from several MALVs and their free-living relatives, we show that MALVs evolved independently from two distinct, free-living ancestors and that their parasitism evolved in parallel. Phylogenomics shows one subgroup (MALV-II and -IV, or Syndiniales) is related to a novel lineage of free-living, eukaryovorous predators, the eleftherids, while the other (MALV-I, or Ichthyodinida) is related to the free-living predator Oxyrrhis and retains proteins targeted to a non-photosynthetic plastid. Reconstructing the evolution of photosynthesis, plastids, and parasitism in early-diverging dinoflagellates shows a number of parallels with the evolution of their apicomplexan sisters. In both groups, similar forms of parasitism evolved multiple times and photosynthesis was lost many times. By contrast, complete loss of the plastid organelle is infrequent and, when this does happen, leaves no residual genes.


Subject(s)
Dinoflagellida , Parasites , Animals , Parasites/genetics , Ecosystem , Phylogeny , Plastids/genetics , Photosynthesis/genetics , Dinoflagellida/genetics
13.
PLoS Biol ; 21(11): e3002395, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37988341

ABSTRACT

Microbial life maintains nearly all the support systems that keep the Earth habitable, yet the diversity of this vast microbial world is greatly understudied, misrepresented, and misunderstood. Even what we do know is difficult to communicate broadly because an intuitive grasp of what these tiny organisms are like is abstract, and we lack tools that would help to describe them. In this Essay, we present a series of openly available technical diagrams that illustrate the diverse range of complex body plans of microbial eukaryotes (or "protists"), as well as an illustrated tree to show the vast diversity they encompass and how they are related to the more familiar macroscopic animals, fungi, and plants. These sorts of tools are desperately needed for teaching and communication about the microbial world, which is a pressingly important problem where much improvement is needed.


Subject(s)
Eukaryota , Fungi , Animals , Plants
14.
Sci Rep ; 13(1): 18612, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903823

ABSTRACT

The phylum Phoronida comprises filter-feeding invertebrates that live in a protective tube sometimes reinforced with particulate material from the surrounding environments. Animals with these characteristics make promising candidate hosts for symbiotic bacteria, given the constant interactions with various bacterial colonizers, yet phoronids are one of the very few animal phyla with no available microbiome data whatsoever. Here, by sequencing the V4 region of the 16S rRNA gene, we compare bacterial microbiomes in whole phoronids, including both tube and living tissues, with those associated exclusively to the isolated tube and/or the naked animal inside. We also compare these communities with those from the surrounding water. Phoronid microbiomes from specimens belonging to the same colony but collected a month apart were significantly different, and bacterial taxa previously reported in association with invertebrates and sediment were found to drive this difference. The microbiomes associated with the tubes are very similar in composition to those isolated from whole animals. However, just over half of bacteria found in whole specimens are also found both in tubes and naked specimens. In conclusion, phoronids harbour bacterial microbiomes that differ from those in the surrounding water, but the composition of those microbiomes is not stable and appears to change in the same colony over a relatively short time frame. Considering individual spatial/anatomical compartments, the phoronid tube contributes most to the whole-animal microbiome.


Subject(s)
Invertebrates , Microbiota , Animals , RNA, Ribosomal, 16S/genetics , Bacteria , Water
15.
Curr Biol ; 33(19): 4252-4260.e3, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37703877

ABSTRACT

Warnowiid dinoflagellates contain a highly complex camera-eye-like structure called the ocelloid that is composed of different organelles resembling parts of metazoan eyes, including a modified plastid that serves as the retinal body.1 The overall structure of the ocelloid has been investigated by microscopy; because warnowiids are not in culture and are rare in nature, we know little about their function.1,2 Here, we generate single-cell transcriptomes from 18 warnowiid cells collected directly from the marine environment representing all 4 known genera and 1 previously undescribed genus, as well as 8 cells from a related lineage, the polykrikoids. Phylogenomic analyses show that photosynthesis was independently lost twice in warnowiids. Interestingly, the non-photosynthetic taxa still express a variety of photosynthesis-related proteins. Nematodinium and Warnowia (known or suspected to be photosynthetic1,3) unsurprisingly express a full complement of photosynthetic pathway components. However, non-photosynthetic genera with ocelloids were also found to express light-harvesting complexes, photosystem I, photosynthetic electron transport (PET), cytochrome b6f, and, in Erythropsidinium, plastid ATPase, representing all major complexes except photosystem II and the Calvin cycle. This suggests that the non-photosynthetic retinal body has retained a reduced but still substantial photosynthetic apparatus that perhaps functions using cyclic electron flow (CEF). This may support ATP synthesis in a reduced capacity, but it is also possible that the photosystem has been co-opted to function as a light-driven proton pump at the heart of the sensory mechanism within the complex architecture of ocelloids.

16.
Curr Biol ; 33(15): R790-R791, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37552939

ABSTRACT

Tikhonenkov et al. introduce the Provora-a newly described, yet ancient, supergroup of unicellular protists encompassing as much genetic diversity as animals and fungi combined.


Subject(s)
Eukaryota , Phylogeny
17.
J Eukaryot Microbiol ; 70(5): e12991, 2023.
Article in English | MEDLINE | ID: mdl-37424051

ABSTRACT

The euglenids are a species-rich group of flagellates with varying modes of nutrition that can be found in diverse habitats. Phagotrophic members of this group gave rise to phototrophs and hold the key to understanding the evolution of euglenids as a whole, including the evolution of complex morphological characters like the euglenid pellicle. Yet to understand the evolution of these characters, a comprehensive sampling of molecular data is needed to correlate morphological and molecular data, and to estimate a basic phylogenetic backbone of the group. While the availability of SSU rDNA and, more recently, multigene data from phagotrophic euglenids has improved, several "orphan" taxa remain without any molecular data whatsoever. Dolium sedentarium is one such taxon: It is a rarely-observed phagotrophic euglenid that inhabits tropical benthic environments and is one of few known sessile euglenids. Based on morphological characters, it has been thought of as part of the earliest branch of euglenids, the Petalomonadida. We report the first molecular sequencing data for Dolium using single-cell transcriptomics, adding another small piece in the puzzle of euglenid evolution. Both SSU rDNA and multigene phylogenies confirm it as a solitary branch within Petalomonadida.


Subject(s)
Euglenida , Phylogeny , Euglenida/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data
18.
BMC Biol ; 21(1): 137, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280585

ABSTRACT

BACKGROUND: Intracellular symbionts often undergo genome reduction, losing both coding and non-coding DNA in a process that ultimately produces small, gene-dense genomes with few genes. Among eukaryotes, an extreme example is found in microsporidians, which are anaerobic, obligate intracellular parasites related to fungi that have the smallest nuclear genomes known (except for the relic nucleomorphs of some secondary plastids). Mikrocytids are superficially similar to microsporidians: they are also small, reduced, obligate parasites; however, as they belong to a very different branch of the tree of eukaryotes, the rhizarians, such similarities must have evolved in parallel. Since little genomic data are available from mikrocytids, we assembled a draft genome of the type species, Mikrocytos mackini, and compared the genomic architecture and content of microsporidians and mikrocytids to identify common characteristics of reduction and possible convergent evolution. RESULTS: At the coarsest level, the genome of M. mackini does not exhibit signs of extreme genome reduction; at 49.7 Mbp with 14,372 genes, the assembly is much larger and gene-rich than those of microsporidians. However, much of the genomic sequence and most (8075) of the protein-coding genes code for transposons, and may not contribute much of functional relevance to the parasite. Indeed, the energy and carbon metabolism of M. mackini share several similarities with those of microsporidians. Overall, the predicted proteome involved in cellular functions is quite reduced and gene sequences are extremely divergent. Microsporidians and mikrocytids also share highly reduced spliceosomes that have retained a strikingly similar subset of proteins despite having reduced independently. In contrast, the spliceosomal introns in mikrocytids are very different from those of microsporidians in that they are numerous, conserved in sequence, and constrained to an exceptionally narrow size range (all 16 or 17 nucleotides long) at the shortest extreme of known intron lengths. CONCLUSIONS: Nuclear genome reduction has taken place many times and has proceeded along different routes in different lineages. Mikrocytids show a mix of similarities and differences with other extreme cases, including uncoupling the actual size of a genome with its functional reduction.


Subject(s)
Microsporidia , Microsporidia/genetics , Phylogeny , Evolution, Molecular , Genome , Introns , Eukaryota/genetics
19.
J Eukaryot Microbiol ; 70(5): e12987, 2023.
Article in English | MEDLINE | ID: mdl-37282792

ABSTRACT

Most Parabasalia are symbionts in the hindgut of "lower" (non-Termitidae) termites, where they widely vary in morphology and degree of morphological complexity. Large and complex cells in the class Cristamonadea evolved by replicating a fundamental unit, the karyomastigont, in various ways. We describe here four new species of Calonymphidae (Cristamonadea) from Rugitermes hosts, assigned to the genus Snyderella based on diagnostic features (including the karyomastigont pattern) and molecular phylogeny. We also report a new genus of Calonymphidae, Daimonympha, from Rugitermes laticollis. Daimonympha's morphology does not match that of any known Parabasalia, and its SSU rRNA gene sequence corroborates this distinction. Daimonympha does however share a puzzling feature with a few previously described, but distantly related, Cristamonadea: a rapid, smooth, and continuous rotation of the anterior end of the cell, including the many karyomastigont nuclei. The function of this rotatory movement, the cellular mechanisms enabling it, and the way the cell deals with the consequent cell membrane shear, are all unknown. "Rotating wheel" structures are famously rare in biology, with prokaryotic flagella being the main exception; these mysterious spinning cells found only among Parabasalia are another, far less understood, example.


Subject(s)
Isoptera , Parabasalidea , Animals , Phylogeny , South America
20.
Mol Phylogenet Evol ; 186: 107859, 2023 09.
Article in English | MEDLINE | ID: mdl-37329929

ABSTRACT

Haplozoans are intestinal parasites of marine annelids with bizarre traits, including a differentiated and dynamic trophozoite stage that resembles the scolex and strobila of tapeworms. Described originally as "Mesozoa", comparative ultrastructural data and molecular phylogenetic analyses have shown that haplozoans are aberrant dinoflagellates; however, these data failed to resolve the phylogenetic position of haplozoans within this diverse group of protists. Several hypotheses for the phylogenetic position of haplozoans have been proposed: (1) within the Gymnodiniales based on tabulation patterns on the trophozoites, (2) within the Blastodiniales based on the parasitic life cycle, and (3) part of a new lineage of dinoflagellates that reflects the highly modified morphology. Here, we demonstrate the phylogenetic position of haplozoans by using three single-trophozoite transcriptomes representing two species: Haplozoon axiothellae and two isolates of H. pugnus collected from the Northwestern and Northeastern Pacific Ocean. Unexpectedly, our phylogenomic analysis of 241 genes showed that these parasites are unambiguously nested within the Peridiniales, a clade of single-celled flagellates that is well represented in marine phytoplankton communities around the world. Although the intestinal trophozoites of Haplozoon species do not show any peridinioid characteristics, we suspect that uncharacterized life cycle stages may reflect their evolutionary history within the Peridiniales.


Subject(s)
Cestoda , Dinoflagellida , Parasites , Polychaeta , Animals , Phylogeny , Cestoda/genetics , Dinoflagellida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...