Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Neurol ; 80(4): 479-89, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27464346

ABSTRACT

The emergence of Zika virus in the Americas has followed a pattern that is familiar from earlier epidemics of other viruses, where a new disease is introduced into a human population and then spreads rapidly with important public health consequences. In the case of Zika virus, an accumulating body of recent evidence implicates the virus in the etiology of serious pathologies of the human nervous system, that is, the occurrence of microcephaly in neonates and Guillain-Barré syndrome in adults. Zika virus is an arbovirus (arthropod-borne virus) and a member of the family Flaviviridae, genus Flavivirus. Zika virions are enveloped and icosahedral, and contain a nonsegmented, single-stranded, positive-sense RNA genome, which encodes 3 structural and 7 nonstructural proteins that are expressed as a single polyprotein that undergoes cleavage. Zika genomic RNA replicates in the cytoplasm of infected host cells. Zika virus was first detected in 1947 in the blood of a febrile monkey in Uganda's Zika Forest and in crushed suspensions of the Aedes mosquito, which is one of the vectors for Zika virus. The virus remained obscure, with a few human cases confined to Africa and Asia. There are two lineages of the Zika virus, African and Asian, with the Asian strain causing outbreaks in Micronesia in 2007 and French Polynesia in 2013-2014. From here, the virus spread to Brazil with the first report of autochthonous Zika transmission in the Americas in March 2015. The rapid advance of the virus in the Americas and its likely association with microcephaly and Guillain-Barré syndrome make Zika an urgent public health concern. Ann Neurol 2016;80:479-489.


Subject(s)
Guillain-Barre Syndrome/etiology , Microcephaly/etiology , Zika Virus Infection/complications , Zika Virus/genetics , Zika Virus/pathogenicity , Adult , History, 20th Century , History, 21st Century , Humans , Infant, Newborn , Zika Virus/classification , Zika Virus Infection/epidemiology , Zika Virus Infection/history
2.
Ann Neurol ; 77(4): 560-70, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25623836

ABSTRACT

Many neurological diseases of the central nervous system (CNS) are underpinned by malfunctions of the immune system, including disorders involving opportunistic infections. Progressive multifocal leukoencephalopathy (PML) is a lethal CNS demyelinating disease caused by the human neurotropic polyomavirus JC (JCV) and is found almost exclusively in individuals with immune disruption, including patients with human immunodeficiency virus/acquired immunodeficiency syndrome, patients receiving therapeutic immunomodulatory monoclonal antibodies to treat conditions such as multiple sclerosis, and transplant recipients. Thus, the public health significance of this disease is high, because of the number of individuals constituting the at-risk population. The incidence of PML is very low, whereas seroprevalence for the virus is high, suggesting infection by the virus is very common, and so it is thought that the virus is restrained but it persists in an asymptomatic state that can only occasionally be disrupted to lead to viral reactivation and PML. When JCV actively replicates in oligodendrocytes and astrocytes of the CNS, it produces cytolysis, leading to formation of demyelinated lesions with devastating consequences. Defining the molecular nature of persistence and events leading to reactivation of the virus to cause PML has proved to be elusive. In this review, we examine the current state of knowledge of the JCV life cycle and mechanisms of pathogenesis. We will discuss the normal course of the JCV life cycle including transmission, primary infection, viremia, and establishment of asymptomatic persistence as well as pathogenic events including migration of the virus to the brain, reactivation from persistence, viral infection, and replication in the glial cells of the CNS and escape from immunosurveillance.


Subject(s)
JC Virus/metabolism , Leukoencephalopathy, Progressive Multifocal/blood , Leukoencephalopathy, Progressive Multifocal/transmission , Animals , Humans , JC Virus/immunology , Leukoencephalopathy, Progressive Multifocal/diagnosis , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL