Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Stress Biol ; 4(1): 36, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158750

ABSTRACT

Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.

2.
Front Plant Sci ; 15: 1406092, 2024.
Article in English | MEDLINE | ID: mdl-39119490

ABSTRACT

Soil salinity poses a significant threat to agricultural productivity, impacting the growth and yield of wheat (Triticum aestivum L.) plants. This study investigates the potential of melatonin (MT; 100 µM) and hydrogen sulfide (H2S; 200 µM sodium hydrosulfide, NaHS) to confer the tolerance of wheat plants to 100 mM NaCl. Salinity stress induced the outburst of reactive oxygen species (ROS) resulting in damage to the chloroplast structure, growth, photosynthesis, and yield. Application of either MT or NaHS augmented the activity of antioxidant enzymes, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione (GSH) levels, upregulated the expression of Na+ transport genes (SOS1, SOS2, SOS3, NHX1), resulting in mitigation of salinity stress. Thus, improved stomatal behavior, gas-exchange parameters, and maintenance of chloroplast structure resulted in enhanced activity of the Calvin cycle enzymes and overall enhancement of growth, photosynthetic, and yield performance of plants under salinity stress. The use of DL-propargylglycine (PAG, an inhibitor of hydrogen sulfide biosynthesis) and p-chlorophenyl alanine (p-CPA, an inhibitor of melatonin biosynthesis) to plants under salt stress showed the comparative necessity of MT and H2S in mitigation of salinity stress. In the presence of PAG, more pronounced detrimental effects were observed than in the presence of p-CPA, emphasizing that MT was involved in mitigating salinity through various potential pathways, one of which was through H2S.

3.
Healthc Technol Lett ; 11(4): 227-239, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39100502

ABSTRACT

Autism spectrum disorder (ASD) is a complex psychological syndrome characterized by persistent difficulties in social interaction, restricted behaviours, speech, and nonverbal communication. The impacts of this disorder and the severity of symptoms vary from person to person. In most cases, symptoms of ASD appear at the age of 2 to 5 and continue throughout adolescence and into adulthood. While this disorder cannot be cured completely, studies have shown that early detection of this syndrome can assist in maintaining the behavioural and psychological development of children. Experts are currently studying various machine learning methods, particularly convolutional neural networks, to expedite the screening process. Convolutional neural networks are considered promising frameworks for the diagnosis of ASD. This study employs different pre-trained convolutional neural networks such as ResNet34, ResNet50, AlexNet, MobileNetV2, VGG16, and VGG19 to diagnose ASD and compared their performance. Transfer learning was applied to every model included in the study to achieve higher results than the initial models. The proposed ResNet50 model achieved the highest accuracy, 92%, compared to other transfer learning models. The proposed method also outperformed the state-of-the-art models in terms of accuracy and computational cost.

5.
Plants (Basel) ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38592775

ABSTRACT

A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.

6.
Plant Physiol Biochem ; 207: 108437, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38368727

ABSTRACT

The gaseous signaling molecules, ethylene (ET) and hydrogen sulfide (H2S) are well known for their ability to mitigate abiotic stress, but how they interact with mineral nutrients under heat stress is unclear. We have studied the involvement of ET and H2S in adaptation of heat stress on the availability of sulfur (S) levels in rice (Oryza sativa L.). Heat stress (40 °C) negatively impacted growth and photosynthetic-sulfur use efficiency (p-SUE), with accumulation of reactive oxygen species (ROS) in six rice cultivars, namely PS 2511, Birupa, Nidhi, PB 1509, PB 1728, and Panvel. Supplementation of S at 2.0 mM SO42- in the form of MgSO4, improved growth and photosynthetic attributes more than 1.0 mM SO42- under control (28 °C), and mitigated heat stress effects more prominently in PS 2511 (heat-tolerant) than in PB 1509 (heat-sensitive) cultivar. The higher heat stress mitigation potential of 2.0 mM SO42- in heat-tolerant cultivar was correlated with higher S-assimilation, activity of antioxidant enzymes, stomatal (stomatal conductance) and non-stomatal limitations, activity of carbonic anhydrase and Rubisco, and mesophyll conductance. The use of norbornadiene (NBD) and hypotaurine (HT), ET and H2S inhibitors, respectively, resulted in the lowest values for photosynthetic efficiency, stomatal and non-stomatal factors, implying the mediation of ET and H2S in heat stress acclimation. The connectivity of ET and H2S with S-assimilation through a common metabolite cysteine (Cys) improved heat stress adaptation in which H2S acted downstream to ET-mediated responses. Thus, the better adaptability of rice plants to heat stress may be obtained through modulation of ET and H2S via S.


Subject(s)
Hydrogen Sulfide , Oryza , Oryza/metabolism , Hydrogen Sulfide/metabolism , Heat-Shock Response , Sulfur/metabolism , Ethylenes , Acclimatization
7.
Biomolecules ; 14(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254690

ABSTRACT

Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.


Subject(s)
Amino Acid Oxidoreductases , Lyases , Nitric Oxide Synthase , Amino Acid Oxidoreductases/genetics , Carboxylic Acids , Ethylenes , Stress, Physiological , Plant Physiological Phenomena/genetics
SELECTION OF CITATIONS
SEARCH DETAIL