Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(18): e2311809, 2024 May.
Article in English | MEDLINE | ID: mdl-38241612

ABSTRACT

Mesoporous metal oxides exhibit excellent physicochemical properties and are widely used in various fields, including energy storage/conversion, catalysis, and sensors. Although several soft-template approaches are reported, high-temperature calcination for both metal oxide formation and template removal is necessary, which limits direct synthesis on a plastic substrate for flexible devices. Here, a universal synthetic approach that combines thermal activation and oxygen plasma to synthesize diverse mesoporous metal oxides (V2O5, V6O13, TiO2, Nb2O5, WO3, and MoO3) at low temperatures (150-200 °C), which can be applicable to a flexible polymeric substrate is introduced. As a demonstration, a flexible micro-supercapacitor is fabricated by directly synthesizing mesoporous V2O5 on an indium-tin oxide-coated colorless polyimide film. The energy storage performance is well maintained under severe bending conditions.

2.
Macromol Rapid Commun ; : e2300312, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37461362

ABSTRACT

Hierarchical cylindrical nanostructures with different diameters (or shapes) have received much attention because of potential applications to next-generation lithography or advanced optical devices. Herein, via small-angle X-ray scattering and transmission electron microscopy, tetragonally and rectangularly packed hierachical cylindrical nanostructures are observed by tailoring the volume fraction of polystyrene mid-block in polystyrene-b-polyisoprene-b-polystyrene-b-poly(2-vinylpyridine) tetrablock terpolymer (S1 IS2 V). P2VP becomes the main cylinder, while PI forms satellite cylinders surrounding the main P2VP cylinder. When the length of S2 block is relatively short, tetragonal arrangement of cylinders is observed. But, a rectangular arrangement of cylinders is formed for larger S2 block. The experimentally observed hierarchical cylindrical nanostructures are in good agreement with the prediction by the self-consistent field theory.

3.
ACS Macro Lett ; 12(7): 915-920, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37363940

ABSTRACT

Hexagonally packed (HEX) cylindrical microdomains can be obtained through the self-assembly of block copolymers (BCPs) with a moderately asymmetric volume fraction of one block (f), resulting in the formation of minor cylinders. However, for next-generation lithography and high-density memory devices, it is desirable to obtain densely and tetragonally packed inverted cylindrical microdomains, which are composed of the major block in the minor matrix. The inverted cylinders differ from conventional HEX cylinders, which consist of the minor block in the matrix of the major block. In this study, we achieved this objective by utilizing a binary blend of a polystyrene-b-poly(4-vinylpyridine) copolymer (S4VP) and polystyrene-b-poly(4-hydroxystyrene) copolymer (SHS), where the P4VP block exhibited a strong hydrogen bonding interaction with the PHS block. By carefully controlling the molecular weight ratio of S4VP and SHS as well as the blend composition, we successfully observed tetragonally packed inverted PS cylinders with a square cross-section at a volume fraction of PS of 0.69.

4.
Nanoscale Adv ; 5(9): 2565-2572, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37143805

ABSTRACT

Non-noble transition metal hydroxides have been widely used in electrochemical devices because of low cost and multiple redox states. In particular, self-supported porous transition metal hydroxides are used to improve the electrical conductivity, as well as achieving fast electron and mass transfer and a large effective surface area. Herein, we introduce facile synthesis of self-supported porous transition metal hydroxides using a poly(4-vinyl pyridine) (P4VP) film. We used metal cyanide as a transition metal precursor capable of forming metal hydroxide anions in aqueous solution, which is the seed for transition metal hydroxides. To increase the coordination between P4VP and the transition metal cyanide precursors, we dissolved the precursors in buffer solutions with various pH. When the P4VP film was immersed in the precursor solution with lower pH, the metal cyanide precursors were sufficiently coordinated with the protonated nitrogen in P4VP. When reactive ion etching was performed on the precursor-containing P4VP film, the P4VP region without coordination was etched out and became pores. Then, the coordinated precursors were aggregated as metal hydroxide seeds and became the metal hydroxide backbone, resulting in the formation of porous transition metal hydroxide structures. We successfully fabricated various self-supported porous transition metal hydroxides (Ni(OH)2, Co(OH)2, and FeOOH). Finally, we prepared a pseudo-capacitor based on self-supported porous Ni(OH)2, which showed a good specific capacitance (780 F g-1 at 5 A g-1).

5.
ACS Appl Mater Interfaces ; 15(50): 57905-57912, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37040434

ABSTRACT

Ordered mesoporous carbons (OMCs) are promising materials for cathode materials of a Zn ion hybrid capacitor (Zn HC) due to their high surface area and interconnected porous structure. Graphitization of the framework and nitrogen doping have been used to improve the energy storage performance of the OMCs by enhancing electrical conductivity, pseudocapacitive reaction sites, and surface affinity toward aqueous electrolytes. Thus, when both methods are simultaneously implemented to the OMCs, the Zn HC would have improved energy storage performance. Herein, we introduce a facile synthetic method for N-doped mesoporous graphitic carbon (N-mgc) by utilizing polystyrene-block-poly(2-vinlypyridine) copolymer (PS-b-P2VP) as both soft-template and carbon/nitrogen sources. Co-assembly of PS-b-P2VP with Ni precursors for graphitization formed a mesostructured composite, which was converted to N-doped graphitic carbon through catalytic pyrolysis. After selective removal of Ni, N-mgc was prepared. The obtained N-mgc exhibited interconnected mesoporous structure with high nitrogen content and high surface area. When N-mgc was employed as a cathode material in Zn ion HC, excellent energy storage performance was achieved: a high specific capacitance (43 F/g at 0.2 A/g), a high energy density of 19.4 Wh/kg at a power density of 180 W/kg, and reliable cycle stability (>3000 cycles).

6.
ACS Appl Mater Interfaces ; 15(2): 3266-3273, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36598796

ABSTRACT

Plasmonic broad-band absorbers have received much attention because of their high absorption and potential applications for light-absorbing devices such as thermophotovoltaics, solar energy harvesting, and thermal emitters. However, the fabrication of complex structures in a large area and thermostability remains a great challenge. Here, we report a titanium nitride nanoring broad-band absorber that has over 95% average absorption in the visible and near-infrared regions (400-900 nm). Nanoring structures in a large area (inch2) are fabricated by shadow sphere lithography, which can innovatively increase fabrication efficiency. The nanoring absorber showed over 2.3 times higher-temperature increases than flat film under the irradiation of light. These large-scale and broad-band absorbers have potential applications for solar energy conversion devices such as thermophotovoltaics and photothermal devices.

7.
ACS Appl Mater Interfaces ; 14(41): 46994-47002, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36201256

ABSTRACT

Graphene is a promising active material for electric double layer supercapacitors (EDLCs) due to its high electric conductivity and lightweight nature. However, for practical uses as a power source of electronic devices, a porous structure is advantageous to maximize specific energy density. Here, we propose a facile fabrication approach of mesoporous graphene (m-G), in which self-assembled mesoporous structures of poly(styrene)-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) are exploited as both mesostructured catalytic template and a carbon source. Notably, the mesostructured catalytic template is sufficient to act as a rigid support without structural collapse, while PS-b-P2VP converts to graphene, generating m-G with a pore diameter of ca. 3.5 nm and high specific surface area of 186 m2/g. When the EDLCs were prepared using the obtained m-G and ionic liquids, excellent electrochemical behaviors were achieved even at high operation voltages (0 ∼ 3.5 V), including a large specific capacitance (130.2 F/g at 0.2 A/g), high-energy density of 55.4 W h/kg at power density of 350 W/kg, and excellent cycle stability (>10,000 cycles). This study demonstrates that m-G is a promising material for high-performance energy storage devices.

8.
ACS Macro Lett ; 11(11): 1291-1297, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36301672

ABSTRACT

Triboelectric nanogenerators (TENGs) have received significant attention for next-generation wearable electronics due to their simple device structure and low cost. Although the performance of TENGs is intimately tied to compressibility effects in the charge-generating layer, achieving high compressibility with conventional elastomers is challenging because molecular entanglements place a lower bound on the softness of cross-linked networks. Here, we demonstrate that bottlebrush elastomers are efficient charge-generating layers that improve the output performance of TENGs, including voltage, current, and surface potential, by minimizing entanglements and decreasing the compressive modulus (E). For example, a cross-linked bottlebrush with poly(dimethylsiloxane) side chains yielded TENGs with an output voltage (120 V) more than two times larger than a linear PDMS network (55 V). In conclusion, this study highlights the advantage of designing new charge-generating layers with improved compressibility to enhance TENG performance.


Subject(s)
Electronics , Nanotechnology , Elastomers
9.
Nano Converg ; 9(1): 40, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36069949

ABSTRACT

Stacked split-ring resonators (SSRR) arrays exhibiting polarization-sensitive dichroic responses in both visible and near-infrared wavelengths are realized over a centimeter-scale large area. The SSRR arrays are derived from pagoda-like nanorods fabricated from the self-assembly of a lamellae-forming polystyrene-b-poly (methyl methacrylate) copolymer (PS-b-PMMA) confined in cylindrical pores of anodized aluminum oxide (AAO) template. Along the nanorod direction, PS and PMMA nanodomains were alternately stacked with the same distance. Silver crescents and semi-hemispherical covers, which are essential for SSRR with the polarization sensitivity, were obliquely deposited on the single side of the nanorod after removing the AAO template and reactive-ion etching treatment. These sophisticated nanoscale architectures made by bottom-up fabrication can be applied to structural color, optical anti-counterfeiting, and commercial optical components in a large area.

10.
Microsyst Nanoeng ; 7: 14, 2021.
Article in English | MEDLINE | ID: mdl-34567729

ABSTRACT

Broadband perfect absorbers have been intensively researched for decades because of their near-perfect absorption optical property that can be applied to diverse applications. Unfortunately, achieving large-scale and heat-tolerant absorbers has been remained challenging work because of costly and time-consuming lithography methods and thermolability of materials, respectively. Here, we demonstrate a thermally robust titanium nitride broadband absorber with >95% absorption efficiency in the visible and near-infrared region (400-900 nm). A relatively large-scale (2.5 cm × 2.5 cm) absorber device is fabricated by using a fabrication technique of multiple-patterning colloidal lithography. The optical properties of the absorber are still maintained even after heating at the temperatures >600 ∘C. Such a large-scale, heat-tolerant, and broadband near-perfect absorber will provide further useful applications in solar thermophotovoltaics, stealth, and absorption controlling in high-temperature conditions.

11.
Macromol Rapid Commun ; 42(19): e2100411, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34347926

ABSTRACT

The authors perform directed self-assembly based on graphoepitaxy of symmetric six-arm star-shaped poly(methyl methacrylate)-block-polystyrene copolymer [(PMMA-b-PS)6 ] thin film. The affinity between each block and the trench wall is adjusted by using polymer brushes or selective gold (Au) deposition. When the surface of the trench is strongly selective for the PMMA block, (n+0.75)L0 thick (n is the number of the lamellae, L0 is lamellar domain spacing) lamellae parallel to the trench wall are formed at each side, while nanotubes are formed away from the trench wall. However, for a trench grafted with PS brushes, nanotubes are formed beside (n+0.25)L0 thick lamellar layers. By adjusting the trench width (W) and the affinity between the block and the wall, various dual nanopatterns consisting of lines and nanotubes are fabricated. Moreover, when the trench wall is selectively deposited by Au, asymmetric dual nanopattern is formed, where different numbers of lines exist on each side wall, while nanotubes are formed in the middle of the trench. The observed morphologies depending on the commensurability condition between W and L0 are consistent with predictions by self-consistent field theory.


Subject(s)
Polymethyl Methacrylate , Polystyrenes , Gold , Polymers
12.
ACS Macro Lett ; 10(9): 1119-1124, 2021 09 21.
Article in English | MEDLINE | ID: mdl-35549084

ABSTRACT

Among many possible nanostructures in block copolymer self-assembly, helical nanostructures are particularly important because of potential applications for heterogeneous catalysts and plasmonic materials. In this work, we investigated, via small-angle X-ray scattering and transmission electron microscopy, the morphology of a polystyrene-block-polyisoprene-block-polystyrene-block-poly(2-vinylpyridine) (S1IS2V) tetrablock terpolymer. Very interestingly, when the volume fraction of each block was 0.685, 0.125, 0.060, and 0.130, respectively, a multidomain double-stranded helical nanostructure (MH2) was formed: P2VP chains became a core helix, and PI chains formed double-stranded helices surrounding the core helix. Core and double-stranded helices are connected by short PS2 chains, and PS1 chains become the matrix. The experimentally observed morphology is in good agreement with the prediction by self-consistent field theory. We believe that this multidomain helical structure will be pave the way to the creation of multifunctional helical structures for various applications such as metamaterials.


Subject(s)
Nanostructures , Catalysis , Microscopy, Electron, Transmission , Nanostructures/chemistry , Polymers/chemistry
13.
ACS Nano ; 14(12): 17254-17261, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33232120

ABSTRACT

Evaporative self-assembly of semiconducting polymers is a low-cost route to fabricating micrometer and nanoscale features for use in organic and flexible electronic devices. However, in most cases, rate is limited by the kinetics of solvent evaporation, and it is challenging to achieve uniformity over length- and time-scales that are compelling for manufacturing scale-up. In this study, we report high-throughput, continuous printing of poly(3-hexylthiophene) (P3HT) by a modified doctor blading technique with oscillatory meniscus motion-meniscus-oscillated self-assembly (MOSA), which forms P3HT features ∼100 times faster than previously reported techniques. The meniscus is pinned to a roller, and the oscillatory meniscus motion of the roller generates repetitive cycles of contact-line formation and subsequent slip. The printed P3HT lines demonstrate reproducible and tailorable structures: nanometer scale thickness, micrometer scale width, submillimeter pattern intervals, and millimeter-to-centimeter scale coverage with highly defined boundaries. The line width as well as interval of P3HT patterns can be independently controlled by varying the polymer concentration levels and the rotation rate of the roller. Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals that this dynamic meniscus control technique dramatically enhances the crystallinity of P3HT. The MOSA process can potentially be applied to other geometries, and to a wide range of solution-based precursors, and therefore will develop for practical applications in printed electronics.

14.
Materials (Basel) ; 13(17)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-32842626

ABSTRACT

Owing to their unique topology and physical properties, micelles based on miktoarm amphiphilic star block copolymers play an important role in the biomedical field for drug delivery. Herein, we developed a series of AB2-type poly(D,L-lactide-co-glycolide)-b-poly(N-acryloyl morpholine) (PLGA-b-PNAM2) miktoarm star block copolymers by reversible addition-fragmentation chain-transfer polymerization and ring-opening copolymerization. The resulting miktoarm star polymers were investigated by 1H NMR spectroscopy and gel permeation chromatography. The critical micellar concentration value of the micelles increases with an increase in PNAM block length. As revealed by transmission electron microscopy and dynamic light scattering, the amphiphilic miktoarm star block copolymers can self-assemble to form spherical micellar aggregates in water. The anticancer drug doxorubicin (DOX) was encapsulated by polymeric micelles; the drug-loading efficiency and drug-loading content of the DOX-loaded micelles were 81.7% and 9.1%, respectively. Acidic environments triggered the dissociation of the polymeric micelles, which led to the more release of DOX in pH 6.4 than pH 7.4. The amphiphilic PLGA-b-PNAM2 miktoarm star block copolymers may have broad application as nanocarriers for controlled drug delivery.

15.
ACS Appl Mater Interfaces ; 12(32): 36339-36346, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32672925

ABSTRACT

We present a remarkable improvement in the efficiency of AlGaN deep-ultraviolet light-emitting diodes (LEDs) enabled by the coupling of localized surface plasmon resonance (LSPR) mediated by a high-density array of Al nanoparticles (NPs). The Al NPs with an average diameter of ∼40 nm were uniformly distributed near the Al0.43Ga0.57N/Al0.50Ga0.50N multiple quantum well active region for coupling 285 nm emission by block copolymer lithography. The internal quantum efficiency is enhanced by 57.7% because of the decreased radiative recombination lifetime by the LSPR. As a consequence, the AlGaN LEDs with an array of Al NPs show 33.3% enhanced electroluminescence with comparable electrical properties to those of reference LEDs without Al NPs.

16.
ACS Appl Mater Interfaces ; 12(13): 15667-15674, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32150380

ABSTRACT

We fabricated 3D nanoporous metal structures from poly(2-vinylpyridine)-block-poly(4-vinylpyridine) copolymer (P24VP) thin film with vertically oriented lamellar nanodomains by coordinating corresponding metal precursors followed by reduction to metals. Although metal precursors are coordinated with both P2VP and P4VP blocks, the metal coordination power toward P4VP block is much greater than that toward P2VP block. Thus, most of the metal precursors are located in the P4VP block, while a few exist in the P2VP block. After the metal precursors were reduced to corresponding metals by reactive ion etching, metals located in P4VP regions became continuous main frames. However, metals in P2VP regions could not be continuous because of smaller amounts, resulting in nanoporous structures. Using these 3D nanoporous structures, we measured the electrocatalytic activity for hydrogen evolution reaction. 3D nanoporous platinum (Pt) showed enhanced catalytic activity compared with Pt flat film due to the large surface area. Moreover, 3D nanoporous Pt/cobalt bimetallic structures showed better catalytic activity than 3D nanoporous Pt structures.

17.
ACS Appl Mater Interfaces ; 11(47): 44636-44641, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31692321

ABSTRACT

Block copolymers (BCPs) with various nanostructures such as spheres, cylinders, gyroid, and lamellae, have received great attention for their application in nanolithography through nanopattern transfer to substrates. However, the fabrication of diverse geometries, shapes and sizes of nanostructure on a single substrate at the desired position could not be achieved because the nanostructure based on BCPs is mainly determined by the volume fraction of one block. Here, we synthesize polystyrene-hv-poly(methyl methacrylate) copolymer (PS-hv-PMMA), which contains a photocleavable linker at the junction point between PS and PMMA blocks. After vertically oriented PMMA cylindrical nanodomains in a thin film on a substrate were obtained, dual nanopatterns composed of high-density array of nanodots and nanoholes were successfully fabricated at the desired area on a single substrate using selective irradiation with a mask. The dual nanopatterns could be used to prepare metal (or metal oxide) nanostructure arrays consisting of both nanodots and nanoholes, which are utilized for smart sensors capable of simultaneously detecting two independent molecules on nanodots and nanoholes.

18.
ACS Appl Mater Interfaces ; 11(4): 4399-4407, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30624039

ABSTRACT

Ion gels composed of copolymers and ionic liquids (ILs) have attracted great interest as polymer gel electrolytes for various electrochemical applications. Here, we present highly robust ion gels based on a six-arm star-shaped block copolymer of (poly(methyl methacrylate)- b-polystyrene)6 ((MS)6) and an ionic liquid of 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([EMI][TFSI]). Compared to typical ion gels based on linear polystyrene- b-poly(methyl methacrylate)- b-polystyrene (SMS), the (MS)6-based gels show mechanical moduli of more than twice under various strains (e.g., stretching, compression, and shear). In addition, the outstanding mechanical property is maintained even up to 180 °C without a gel-sol transition. To demonstrate that (MS)6-based ion gels can serve as effective gel electrolytes for electrochemical applications, tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)32+), a representative electrochemiluminescent (ECL) luminophore, is incorporated into the gels. In particular, flexible ECL devices based on (MS)6 gels exhibit high durability against bending deformation compared to devices with gels based on linear SMS having a similar molecular weight and a composition. This result implies that star-shaped block copolymers are effective gelators for achieving flexible/wearable electrochemical electronics.

19.
J Nanosci Nanotechnol ; 18(3): 1901-1904, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29448679

ABSTRACT

Nanocrystalline diamond (NCD) films were grown by hot filament CVD and the precursor composition dependence of the structural properties was examined. Films grown at 1 and 2 CH4 Vol% were found to be NCD layers with grain sizes of ~23-25 nm while films grown at 3-5 Vol% were identified as the mixtures of microcrystalline diamond and graphitic phase. The sp2/sp3 bonded carbon ratio in the grown films increased as the CH4 content increased up to 3 Vol% and then decreased beyond 4 Vol%. Microstructure and deposition rate were also found to be affected by the precursor composition and the NCD film grown at 1 CH4 Vol% showed a very dense microstructure and the highest deposition rate of ~3 nm/min.

20.
Nat Commun ; 8(1): 1765, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176706

ABSTRACT

Block copolymers with various nanodomains, such as spheres, cylinders, and lamellae, have received attention for their applicability to nanolithography. However, those microdomains are determined by the volume fraction of one block. Meanwhile, nanopatterns with multiple shapes are required for the next-generation nanolithography. Although various methods have been reported to achieve dual nanopatterns, all the methods need sophisticated processes using E-beam. Here, we synthesized a miktoarm block copolymer capable of cleavage of one block by ultraviolet. Original cylindrical nanodomains of synthesized block copolymer were successfully transformed to lamellar nanodomains due to the change of molecular architecture by ultraviolet. We fabricated dual nanopatterns consisting of dots and lines at desired regions on a single substrate. We also prepared dual nanopatterns utilizing another phase transformation from spheres to cylinders in a block copolymer with higher interaction parameter. Since our concept has versatility to any block copolymer, it could be employed as next-generation nanolithography.

SELECTION OF CITATIONS
SEARCH DETAIL
...