Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
JCI Insight ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954480

ABSTRACT

Rheumatoid arthritis (RA) management lean toward achieving remission or low-disease activity. In this study, we conducted single-cell RNA sequencing (scRNAseq) of peripheral blood mononuclear cells (PBMCs) from 36 individuals (18 RA patients and 18 matched controls, accounting for age, sex, race, and ethnicity), to identify disease-relevant cell subsets and cell type-specific signatures associated with disease activity. Our analysis revealed 18 distinct PBMC subsets, including an IFITM3 overexpressing Interferon-activated (IFN-activated) monocyte subset. We observed an increase in CD4+ T effector memory cells in patients with moderate to high disease activity (DAS28-CRP ≥ 3.2), and a decrease in non-classical monocytes in patients with low disease activity or remission (DAS28-CRP < 3.2). Pseudobulk analysis by cell type identified 168 differentially expressed genes between RA and matched controls, with a downregulation of pro-inflammatory genes in the gamma-delta T cells subset, alteration of genes associated with RA predisposition in the IFN-activated subset, and non-classical monocytes. Additionally, we identified a gene signature associated with moderate-high disease activity, characterized by upregulation of pro-inflammatory genes such as TNF, JUN, EGR1, IFIT2, MAFB, G0S2, and downregulation of genes including HLA-DQB1, HLA-DRB5, TNFSF13B. Notably, cell-cell communication analysis revealed an upregulation of signaling pathways, including VISTA, in both moderate-high and remission-low disease activity contexts. Our findings provide valuable insights into the systemic cellular and molecular mechanisms underlying RA disease activity.

3.
Front Immunol ; 15: 1393096, 2024.
Article in English | MEDLINE | ID: mdl-38855101

ABSTRACT

Introduction: Antibody production and the generation of memory B cells are regulated by T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in germinal centers. However, the precise role of Tfr cells in controlling antibody production is still unclear. We have previously shown that both Tfh and Tfr cells express the IL-1R1 agonist receptor, whereas only Tfr cells express the IL-1R2 decoy and IL-1Ra antagonist receptors. We aimed to investigate the role of IL-1 receptors in the regulation of B cell responses by Tfh and Tfr. Methods: We generated mice with IL-1 receptors inactivated in Tfh or Tfr and measured antibody production and cell activation after immunisation. Results: While IL-1ß levels are increased in the draining lymph node after immunisation, antigen-specific antibody levels and cell phenotypes indicated that IL-1ß can activate both Tfh and Tfr cells through IL-1R1 stimulation. Surprisingly, expression of IL-1R2 and IL-1Ra on Tfr cells does not block IL-1 activation of Tfh cells, but rather prevents IL-1/IL-1R1-mediated early activation of Tfr cells. IL-1Rs also regulate the antibody response to autoantigens and its associated pathophysiology in an experimental lupus model. Discussion: Collectively, our results show that IL-1 inhibitory receptors expressed by Tfr cells prevent their own activation and suppressive function, thus licensing IL-1-mediated activation of Tfh cells after immunisation. Further mechanistic studies should unravel these complex interactions between IL-1ß and follicular helper and regulatory T cells and provide new avenues for therapeutic intervention.


Subject(s)
Germinal Center , T Follicular Helper Cells , T-Lymphocytes, Regulatory , Animals , Germinal Center/immunology , Mice , T Follicular Helper Cells/immunology , T-Lymphocytes, Regulatory/immunology , Lymphocyte Activation/immunology , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-1 Type I/immunology , Mice, Inbred C57BL , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-1/metabolism , Interleukin-1/immunology , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/immunology , Antibody Formation/immunology
4.
RMD Open ; 10(2)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38580347

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) is a chronic autoimmune disease, with impaired immune response, increased fibrosis and endothelial dysfunction. Regulatory T cells (Tregs), which are essential to control inflammation, tissue repair and autoimmunity, have a decreased frequency and impaired function in SSc patients. Low-dose interleukin-2 (IL-2LD) can expand and activate Tregs and has, therefore, a therapeutic potential in SSc. OBJECTIVE: We aimed to assess the safety and biological efficacy of IL-2LD in patients with SSc. METHODS: As part of the TRANSREG open-label phase IIa basket trial in multiple autoimmune diseases, we studied nine patients with SSc without severe organ involvement. Patients received 1 million international units (MIU)/day of IL-2 for 5 days, followed by fortnightly injections for 6 months. Laboratory and clinical evaluations were performed between baseline and month 6. RESULTS: At day 8, the primary endpoint (Treg frequency) was reached with a 1.8±0.5-fold increase of Treg levels among CD4+ T lymphocytes (p=0.0015). There were no significant changes in effector T cells nor in B cells. IL-2LD was well tolerated, and no serious adverse events related to treatment occurred. There was a globally stable measurement in the modified Rodnan skin score and Valentini score at month 6. Disease activity and severity measures, the quality of life evaluated by EuroQL-5D-5L and pulmonary function test parameters remained stable during the study period. CONCLUSION: IL-2LD at a dosage of 1 MIU/day safely and selectively activates and expands Tregs. Clinical signs remain stable during the study period. This opens the door to properly powered phase II efficacy trials investigating IL-2LD therapeutic efficacy in SSc.


Subject(s)
Interleukin-2 , Scleroderma, Systemic , T-Lymphocytes, Regulatory , Humans , Autoimmune Diseases/drug therapy , Interleukin-2/adverse effects , Interleukin-2/therapeutic use , Quality of Life , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology , T-Lymphocytes, Regulatory/drug effects
5.
Cell Rep Methods ; 4(4): 100753, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38614088

ABSTRACT

Accurate characterization and comparison of T cell receptor (TCR) repertoires from small biological samples present significant challenges. The main challenge is the low material input, which compromises the quality of bulk sequencing and hinders the recovery of sufficient TCR sequences for robust analyses. We aimed to address this limitation by implementing a strategic approach to pool homologous biological samples. Our findings demonstrate that such pooling indeed enhances the TCR repertoire coverage, particularly for cell subsets of constrained sizes, and enables accurate comparisons of TCR repertoires at different levels of complexity across T cell subsets with different sizes. This methodology holds promise for advancing our understanding of T cell repertoires in scenarios where sample size constraints are a prevailing concern.


Subject(s)
Receptors, Antigen, T-Cell , Animals , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
6.
J Autoimmun ; 144: 103172, 2024 04.
Article in English | MEDLINE | ID: mdl-38330545

ABSTRACT

BACKGROUND: A Tregs insufficiency is central to autoimmune and inflammatory diseases pathophysiology and low dose interleukin-2 (IL-2LD) can specifically activate Tregs. OBJECTIVE: To assess IL-2LD therapeutic potential and select diseases for further clinical development, we performed an open-label, phase 2a, disease-finding, "basket trial" involving patients with one of 13 different autoimmune diseases. METHODS: 81 patients treated with IL-2LD (1 million IU/day) for 5 days, followed by fortnightly injections. The first 48 patients received diluted Proleukin®, while the subsequent 33 received ready-to-use ILT-101®. The primary endpoint was the change in Tregs at day-8 compared to baseline. Key secondary endpoints included clinical efficacy assessments using the Clinical Global Impression (CGI) scale, disease-specific scores, and EuroQL-5D-5L. RESULTS: Our study unveiled a universal and significant expansion and activation of Tregs, without concomitant Teffs activation, across all 13 autoimmune diseases. Both Proleukin® and ready-to-use ILT-101® demonstrated identical effects on Tregs. CGI scores reflecting activity, severity, and efficacy were significantly reduced in the overall patient population. Disease-specific clinical scores improved in five of the six disease cohorts with at least six patients, namely ankylosing spondylitis, systemic lupus erythematosus, Behçet's disease, Sjögren's syndrome, and systemic sclerosis. Urticaria was the only severe adverse event related to treatment. CONCLUSION: IL-2LD was well-tolerated, exhibiting specific Treg activation and clinical improvements across the 13 autoimmune diseases. CLINICAL IMPLICATION: Tregs stimulation by IL-2LD is a promising therapeutic strategy and IL-2LD holds considerable promise for integration into combinatorial therapeutic approaches.


Subject(s)
Autoimmune Diseases , Interleukin-2 , Humans , Autoimmune Diseases/drug therapy , Behcet Syndrome , Lupus Erythematosus, Systemic/drug therapy , Sjogren's Syndrome , T-Lymphocytes, Regulatory
7.
Ann Rheum Dis ; 83(5): 638-650, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38182406

ABSTRACT

OBJECTIVES: Based on genetic associations, McGonagle and McDermott suggested a classification of autoimmune and autoinflammatory diseases as a continuum ranging from purely autoimmune to purely autoinflammatory diseases and comprising diseases with both components. We used deep immunophenotyping to identify immune cell populations and molecular targets characterising this continuum. METHODS: We collected blood from 443 patients with one of 15 autoimmune or autoinflammatory diseases and 71 healthy volunteers. Deep phenotyping was performed using 13 flow cytometry panels characterising over 600 innate and adaptive cell populations. Unsupervised and supervised analyses were conducted to identify disease clusters with their common and specific cell parameters. RESULTS: Unsupervised clustering categorised these diseases into five clusters. Principal component analysis deconvoluted this clustering into two immunological axes. The first axis was driven by the ratio of LAG3+ to ICOS+ in regulatory T lymphocytes (Tregs), and segregated diseases based on their inflammation levels. The second axis was driven by activated Tregs and type 3 innate lymphoid cells (ILC3s), and segregated diseases based on their types of affected tissues. We identified a signature of 23 cell populations that accurately characterised the five disease clusters. CONCLUSIONS: We have refined the monodimensional continuum of autoimmune and autoinflammatory diseases as a continuum characterised by both disease inflammation levels and targeted tissues. Such classification should be helpful for defining therapies. Our results call for further investigations into the role of the LAG3+/ICOS+ balance in Tregs and the contribution of ILC3s in autoimmune and autoinflammatory diseases. TRIAL REGISTRATION NUMBER: NCT02466217.


Subject(s)
Autoimmune Diseases , Hereditary Autoinflammatory Diseases , Humans , Immunity, Innate , Immunophenotyping , Lymphocytes , Inflammation
8.
Sci Rep ; 13(1): 22424, 2023 12 16.
Article in English | MEDLINE | ID: mdl-38104181

ABSTRACT

Maternal immune activation (MIA), related to autoimmune/inflammatory diseases or acute infections, during the two first trimesters of pregnancy is a risk factor for autism spectrum disorders (ASD) in offspring. In mice, MIA has a long-term impact on offspring's immune equilibrium resulting in a pro-inflammatory phenotype. We therefore hypothesized that children with ASD and a history of MIA could display a similar phenotype specifically assessed by a higher neutrophil to lymphocyte ratio (NLR). In this study, we used a retrospective sample of 231 dyads involving children with ASD and their mothers. Among ASD patients, 12% had a history of MIA. The multivariate analysis revealed a significant association between NLR in children with ASD and maternal history of MIA (F = 2.27, p = 0.03). Using a categorical approach, we observed an abnormal NLR (over 3) in 7.4% of children with ASD MIA+ compared to 1.9% for MIA-. Our study supports the hypothesis suggesting an impact of MIA on the risk of ASD. Further studies could contribute to the development of biomarkers in MIA+ ASD and enable the development of targeted immunomodulatory therapies.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Female , Child , Humans , Mice , Animals , Autism Spectrum Disorder/genetics , Neutrophils , Retrospective Studies , Mothers , Lymphocytes
9.
NEJM Evid ; 1(1): EVIDoa2100009, 2022 01.
Article in English | MEDLINE | ID: mdl-38319239

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory disease of the artery wall. Regulatory T cells (Tregs) limit inflammation and promote tissue healing. Low doses of interleukin (IL)-2 have the potential to increase Tregs, but its use is contraindicated for patients with ischemic heart disease. METHODS: In this randomized, double-blind, placebo-controlled, dose-escalation trial, we tested low-dose subcutaneous aldesleukin (recombinant IL-2), given once daily for 5 consecutive days. In study part A, the primary end point was safety, and patients with stable ischemic heart disease were randomly assigned to receive placebo or to one of five dose groups (range, 0.3 to 3.0 × 106 IU daily). In study part B, patients with acute non-ST elevation myocardial infarction or unstable angina were randomly assigned to receive placebo or to one of two dose groups (1.5 and 2.5 × 106 IU daily). The coprimary end points were safety and the dose required to increase circulating Tregs by 75%. Single-cell RNA-sequencing of circulating immune cells was used to provide a mechanistic assessment of the effects of aldesleukin. RESULTS: Forty-four patients were randomly assigned to either study part A (n=26) or part B (n=18). In total, 3 patients withdrew before dosing, 27 received active treatment, and 14 received placebo. The majority of adverse events were mild. Two serious adverse events occurred, with one occurring after drug administration. In parts A and B, there was a dose-dependent increase in Tregs. In part B, the estimated dose to achieve a 75% increase in Tregs was 1.46 × 106 IU (95% confidence interval, 1.06 to 1.87). Single-cell RNA-sequencing demonstrated the engagement of distinct pathways and cell­cell interactions. CONCLUSIONS: In this phase 1b/2a study, low-dose IL-2 expanded Tregs without adverse events of major concern. Larger trials are needed to confirm the safety and to further evaluate the efficacy of low-dose IL-2 as an anti-inflammatory therapy for patients with ischemic heart disease. (Funded by the Medical Research Council, the British Heart Foundation, and others; ClinicalTrials.gov number, NCT03113773)


Subject(s)
Interleukin-2 , Interleukin-2/analogs & derivatives , Myocardial Ischemia , T-Lymphocytes, Regulatory , Humans , Interleukin-2/administration & dosage , Interleukin-2/therapeutic use , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Myocardial Ischemia/immunology , Myocardial Ischemia/drug therapy , Double-Blind Method , Male , Middle Aged , Female , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL