Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Immunol ; 15: 1425842, 2024.
Article in English | MEDLINE | ID: mdl-38915410

ABSTRACT

Vaccination against influenza virus can reduce the risk of influenza by 40% to 60%, they rely on the production of neutralizing antibodies specific to influenza hemagglutinin (HA) ignoring the neuraminidase (NA) as an important surface target. Vaccination with standardized NA concentration may offer broader and longer-lasting protection against influenza infection. In this regard, we aimed to compare the potency of a NA displayed on the surface of a VLP with a soluble NA. The baculovirus expression system (BEVS) and the novel virus-free Tnms42 insect cell line were used to express N2 NA on gag-based VLPs. To produce VLP immunogens with high levels of purity and concentration, a two-step chromatography purification process combined with ultracentrifugation was used. In a prime/boost vaccination scheme, mice vaccinated with 1 µg of the N2-VLPs were protected from mortality, while mice receiving the same dose of unadjuvanted NA in soluble form succumbed to the lethal infection. Moreover, NA inhibition assays and NA-ELISAs of pre-boost and pre-challenge sera confirm that the VLP preparation induced higher levels of NA-specific antibodies outperforming the soluble unadjuvanted NA.


Subject(s)
Antibodies, Viral , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Vaccines, Virus-Like Particle , Animals , Neuraminidase/immunology , Neuraminidase/genetics , Influenza Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/administration & dosage , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Female , Mice, Inbred BALB C , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Vaccine Efficacy , Humans , Vaccination/methods
2.
N Biotechnol ; 80: 46-55, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38302001

ABSTRACT

The aim of this study was the development of a scalable production process for high titer (108 pfu/mL and above) recombinant baculovirus stocks with low cell line-derived impurities for the production of virus-like particles (VLP). To achieve this, we developed a high cell density (HCD) culture for low footprint cell proliferation, compared different infection strategies at multiplicity of infection (MOI) 0.05 and 0.005, different infection strategies and validated generally applicable harvest criteria of cell viability ≤ 80%. We also investigated online measurable parameters to observe the baculovirus production. The infection strategy employing a very low virus inoculum of MOI 0.005 and a 1:2 dilution with fresh medium one day after infection proved to be the most resource efficient. There, we achieved higher cell-specific titers and lower host cell protein concentrations at harvest than other tested infection strategies with the same MOI, while saving half of the virus stock for infecting the culture compared to other tested infection strategies. HCD culture by daily medium exchange was confirmed as suitable for seed train propagation, infection, and baculovirus production, equally efficient as the conventionally propagated seed train. Online measurable parameters for cell concentration and average cell diameter were found to be effective in monitoring the production process. The study concluded that a more efficient VLP production process in large scale can be achieved using this virus stock production strategy, which could also be extended to produce other proteins or extracellular vesicles with the baculovirus expression system.


Subject(s)
Baculoviridae , Baculoviridae/metabolism , Cell Line , Cell Proliferation , Cell Count
3.
PLoS One ; 18(7): e0289178, 2023.
Article in English | MEDLINE | ID: mdl-37498808

ABSTRACT

Due to comparably high product titers and low production costs, the baculovirus/insect cell expression system is considered a versatile production platform in the biopharmaceutical industry. Its excellence in producing complex multimeric protein assemblies, including virus-like particles (VLPs), which are considered promising vaccine candidates to counter emerging viral threats, made the system even more attractive. However, the co-formation of budded baculovirus during VLP production poses a severe challenge to downstream processing. In order to reduce the amount of budded baculovirus in the expression supernatant we developed an inducible knockout system based on CRISPR/Cas9 and co-infection with two baculoviral vectors: one bringing along the Cas9 nuclease and the other one having incorporated the sequence for sgRNA expression. With our set-up high titer viruses can be generated separately, as only when both viruses infect cells simultaneously a knockout can occur. When budding essential genes gp64 and vp80 were targeted for knockout, we measured a reduction in baculovirus titer by over 90%. However, as a consequence, we also determined lower overall eYFP fluorescence intensity showing reduced recombinant protein production, indicating that further improvements in engineering as well as purification are required in order to ultimately minimize costs and timeframes for vaccine production utilizing the baculovirus/insect cell expression system.


Subject(s)
CRISPR-Cas Systems , Coinfection , Animals , Coinfection/genetics , RNA, Guide, CRISPR-Cas Systems , Baculoviridae/genetics , Insecta/genetics
5.
J Clin Pathol ; 76(11): 770-777, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36041815

ABSTRACT

BACKGROUND: Serological tests are widely used in various medical disciplines for diagnostic and monitoring purposes. Unfortunately, the sensitivity and specificity of test systems are often poor, leaving room for false-positive and false-negative results. However, conventional methods were used to increase specificity and decrease sensitivity and vice versa. Using SARS-CoV-2 serology as an example, we propose here a novel testing strategy: the 'sensitivity improved two-test' or 'SIT²' algorithm. METHODS: SIT² involves confirmatory retesting of samples with results falling in a predefined retesting zone of an initial screening test, with adjusted cut-offs to increase sensitivity. We verified and compared the performance of SIT² to single tests and orthogonal testing (OTA) in an Austrian cohort (1117 negative, 64 post-COVID-positive samples) and validated the algorithm in an independent British cohort (976 negatives and 536 positives). RESULTS: The specificity of SIT² was superior to single tests and non-inferior to OTA. The sensitivity was maintained or even improved using SIT² when compared with single tests or OTA. SIT² allowed correct identification of infected individuals even when a live virus neutralisation assay could not detect antibodies. Compared with single testing or OTA, SIT² significantly reduced total test errors to 0.46% (0.24-0.65) or 1.60% (0.94-2.38) at both 5% or 20% seroprevalence. CONCLUSION: For SARS-CoV-2 serology, SIT² proved to be the best diagnostic choice at both 5% and 20% seroprevalence in all tested scenarios. It is an easy to apply algorithm and can potentially be helpful for the serology of other infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Seroepidemiologic Studies , Clinical Laboratory Techniques/methods , COVID-19 Testing , Sensitivity and Specificity
6.
Nat Commun ; 13(1): 7926, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36566234

ABSTRACT

Recent waves of COVID-19 correlate with the emergence of the Delta and the Omicron variant. We report that the Spike trimer acts as a highly dynamic molecular caliper, thereby forming up to three tight bonds through its RBDs with ACE2 expressed on the cell surface. The Spike of both Delta and Omicron (B.1.1.529) Variant enhance and markedly prolong viral attachment to the host cell receptor ACE2, as opposed to the early Wuhan-1 isolate. Delta Spike shows rapid binding of all three Spike RBDs to three different ACE2 molecules with considerably increased bond lifetime when compared to the reference strain, thereby significantly amplifying avidity. Intriguingly, Omicron (B.1.1.529) Spike displays less multivalent bindings to ACE2 molecules, yet with a ten time longer bond lifetime than Delta. Delta and Omicron (B.1.1.529) Spike variants enhance and prolong viral attachment to the host, which likely not only increases the rate of viral uptake, but also enhances the resistance of the variants against host-cell detachment by shear forces such as airflow, mucus or blood flow. We uncover distinct binding mechanisms and strategies at single-molecule resolution, employed by circulating SARS-CoV-2 variants to enhance infectivity and viral transmission.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Single Molecule Imaging , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment
7.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36195094

ABSTRACT

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Lectins/pharmacology , Mannose/pharmacology , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/pharmacology , Antiviral Agents/pharmacology
8.
BMJ Open ; 12(5): e052130, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35613821

ABSTRACT

OBJECTIVES: Austria, and particularly its westernmost federal state Vorarlberg, developed an extremely high incidence rate during the COVID-19 pandemic. Healthcare workers (HCWs) worldwide are known to have an increased risk of contracting the disease within the working environment and, therefore, the seroprevalence in this population is of particular interest. We thus aimed to analyse SARS-CoV-2-specific antibody dynamics in Vorarlberg HCWs. DESIGN: Prospective cohort study of HCWs including testing at three different time points for the prevalence of anti-SARS-CoV-2 IgG antibodies specific for nucleocapsid protein (NP) and receptor-binding domain (RBD). SETTING: All five state hospitals of Vorarlberg. PARTICIPANTS: A total of 395 HCWs, enrolled in June 2020 (time point 1 (t1)), 2 months after the end of the first wave, retested between October and November at the beginning of the second wave (time point 2 (t2)) and again at the downturn of the second wave in January 2021 (time point 3 (t3)). MAIN OUTCOMES: We assessed weak and strong seropositivity and associated factors, including demographic and clinical characteristics, symptoms consistent with COVID-19 infection, infections verified by reverse transcription PCR (RT-PCR) and vaccinations. RESULTS: At t1, 3% of HCWs showed strong IgG-specific responses to either NP or RBD. At t2, the rate had increased to 4%, and at t3 to 14%. A strong response was found to be stable for up to 10 months. Overall, only 55% of seropositive specimen had antibodies against both antigens RBD and NP; 29% had only RBD-specific and 16% only NP-specific antibodies. Compared with the number of infections found by RT-PCR, the number of HCWs being seropositive was 38% higher. CONCLUSION AND RELEVANCE: Serological testing based on only one antigen implicates the risk of missing infections; thus, the set of antigens should be broadened in the future. The seroprevalence among participating HCWs was comparable to the general population in Austria. Nevertheless, in view of undetected infections, monitoring and surveillance should be reconsidered.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , Austria/epidemiology , COVID-19/epidemiology , Health Personnel , Humans , Immunoglobulin G , Nucleocapsid Proteins , Pandemics , Prospective Studies , Seroepidemiologic Studies
9.
Biotechnol J ; 17(5): e2100422, 2022 May.
Article in English | MEDLINE | ID: mdl-35078277

ABSTRACT

The receptor binding domain (RBD) of the SARS-CoV-2 spike (S)-protein is a prime target of virus-neutralizing antibodies present in convalescent sera of COVID-19 patients and thus is considered a key antigen for immunosurveillance studies and vaccine development. Although recombinant expression of RBD has been achieved in several eukaryotic systems, mammalian cells have proven particularly useful. The authors aimed to optimize RBD produced in HEK293-6E cells towards a stable homogeneous preparation and addressed its O-glycosylation as well as the unpaired cysteine residue 538 in the widely used RBD (319-541) sequence. The authors found that an intact O-glycosylation site at T323 is highly relevant for the expression and maintenance of RBD as a monomer. Furthermore, it was shown that deletion or substitution of the unpaired cysteine residue C538 reduces the intrinsic propensity of RBD to form oligomeric aggregates, concomitant with an increased yield of the monomeric form of the protein. Bead-based and enzyme-linked immunosorbent assays utilizing these optimized RBD variants displayed excellent performance with respect to the specific detection of even low levels of SARS-CoV-2 antibodies in convalescent sera. Hence, these RBD variants could be instrumental for the further development of serological SARS-CoV-2 tests and inform the design of RBD-based vaccine candidates.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Cysteine , HEK293 Cells , Humans , Immunization, Passive , Mammals , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
10.
Front Plant Sci ; 12: 747500, 2021.
Article in English | MEDLINE | ID: mdl-34646292

ABSTRACT

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in the virus-host cell interaction, and viral infection. The RBD is a major target for neutralizing antibodies, whilst recombinant RBD is commonly used as an antigen in serological assays. Such assays are essential tools to gain control over the pandemic and detect the extent and durability of an immune response in infected or vaccinated populations. Transient expression in plants can contribute to the fast production of viral antigens, which are required by industry in high amounts. Whilst plant-produced RBDs are glycosylated, N-glycan modifications in plants differ from humans. This can give rise to the formation of carbohydrate epitopes that can be recognized by anti-carbohydrate antibodies present in human sera. For the performance of serological tests using plant-produced recombinant viral antigens, such cross-reactive carbohydrate determinants (CCDs) could result in false positives. Here, we transiently expressed an RBD variant in wild-type and glycoengineered Nicotiana benthamiana leaves and characterized the impact of different plant-specific N-glycans on RBD reactivity in serological assays. While the overall performance of the different RBD glycoforms was comparable to each other and to a human cell line produced RBD, there was a higher tendency toward false positive results with sera containing allergy-related CCD-antibodies when an RBD carrying ß1,2-xylose and core α1,3-fucose was used. These rare events could be further minimized by pre-incubating sera from allergic individuals with a CCD-inhibitor. Thereby, false positive signals obtained from anti-CCD antibodies, could be reduced by 90%, on average.

11.
Talanta ; 235: 122691, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517577

ABSTRACT

The nucleocapsid protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for several steps of the viral life cycle, and is abundantly expressed during infection, making it an ideal diagnostic target protein. This protein has a strong tendency for dimerization and interaction with nucleic acids. For the first time, high titers of NP were expressed in E. coli with a CASPON tag, using a growth-decoupled protein expression system. Purification was accomplished by nuclease treatment of the cell homogenate and a sequence of downstream processing (DSP) steps. An analytical method consisting of native hydrophobic interaction chromatography hyphenated to multi-angle light scattering detection (HIC-MALS) was established for in-process control, in particular, to monitor product fragmentation and multimerization throughout the purification process. 730 mg purified NP per liter of fermentation could be produced by the optimized process, corresponding to a yield of 77% after cell lysis. The HIC-MALS method was used to demonstrate that the NP product can be produced with a purity of 95%. The molecular mass of the main NP fraction is consistent with dimerized protein as was verified by a complementary native size-exclusion separation (SEC)-MALS analysis. Peptide mapping mass spectrometry and host cell specific enzyme-linked immunosorbent assay confirmed the high product purity, and the presence of a minor endogenous chaperone explained the residual impurities. The optimized HIC-MALS method enables monitoring of the product purity, and simultaneously access its molecular mass, providing orthogonal information complementary to established SEC-MALS methods. Enhanced resolving power can be achieved over SEC, attributed to the extended variables to tune selectivity in HIC mode.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Chromatography , Escherichia coli/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Nucleocapsid Proteins/genetics , SARS-CoV-2
12.
EMBO J ; 40(19): e108375, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34375000

ABSTRACT

New SARS-CoV-2 variants are continuously emerging with critical implications for therapies or vaccinations. The 22 N-glycan sites of Spike remain highly conserved among SARS-CoV-2 variants, opening an avenue for robust therapeutic intervention. Here we used a comprehensive library of mammalian carbohydrate-binding proteins (lectins) to probe critical sugar residues on the full-length trimeric Spike and the receptor binding domain (RBD) of SARS-CoV-2. Two lectins, Clec4g and CD209c, were identified to strongly bind to Spike. Clec4g and CD209c binding to Spike was dissected and visualized in real time and at single-molecule resolution using atomic force microscopy. 3D modelling showed that both lectins can bind to a glycan within the RBD-ACE2 interface and thus interferes with Spike binding to cell surfaces. Importantly, Clec4g and CD209c significantly reduced SARS-CoV-2 infections. These data report the first extensive map and 3D structural modelling of lectin-Spike interactions and uncovers candidate receptors involved in Spike binding and SARS-CoV-2 infections. The capacity of CLEC4G and mCD209c lectins to block SARS-CoV-2 viral entry holds promise for pan-variant therapeutic interventions.


Subject(s)
Receptors, Mitogen/metabolism , SARS-CoV-2/metabolism , Animals , Binding Sites/physiology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Glycosylation , HEK293 Cells , Humans , Mice , Molecular Dynamics Simulation , Protein Binding/physiology , Vero Cells , Virus Internalization
13.
Front Plant Sci ; 12: 689104, 2021.
Article in English | MEDLINE | ID: mdl-34211491

ABSTRACT

Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.

15.
EBioMedicine ; 67: 103348, 2021 May.
Article in English | MEDLINE | ID: mdl-33906067

ABSTRACT

BACKGROUND: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. METHODS: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. FINDINGS: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. INTERPRETATION: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms. FUNDING: WWTF, Project No. COV20-016; BOKU, LBI/LBG.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Binding Sites , CHO Cells , COVID-19/immunology , Cricetulus , Early Diagnosis , HEK293 Cells , Humans , Immunoglobulin G/blood , Middle Aged , Sensitivity and Specificity , Young Adult
16.
Vaccine ; 38(4): 859-867, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31718898

ABSTRACT

Clinical and historical data underscore the ability of influenza viruses to ally with Staphylococcus aureus and predispose the host for secondary bacterial pneumonia, which is a leading cause of influenza-associated mortality. This is fundamental because no vaccine for S. aureus is available and the number of antibiotic-resistant strains is alarmingly rising. Hence, this leaves influenza vaccination the only strategy to prevent postinfluenza staphylococcal infections. In the present work, we assessed the off-target effects of a Tnms42 insect cell-expressed BEI-treated Gag-VLP preparation expressing the HA of A/Puerto Rico/8/1934 (H1N1) in preventing S. aureus superinfection in mice pre-infected with a homologous or heterologous H1N1 viral challenge strain. Our results demonstrate that matched anti-hemagglutinin immunity elicited by a VLP preparation may suffice to prevent morbidity and mortality caused by lethal secondary bacterial infection. This effect was observed even when employing a single low antigen dose of 50 ng HA per animal. However, induction of anti-hemagglutinin immunity alone was not helpful in inhibiting heterologous viral replication and subsequent bacterial infection. Our results indicate the potential of the VLP vaccine approach in terms of immunogenicity but suggest that anti-HA immunity should not be considered as the sole preventive method for combatting influenza and postinfluenza bacterial infections.


Subject(s)
Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Staphylococcal Infections/prevention & control , Vaccines, Virus-Like Particle/administration & dosage , Animals , Female , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/complications , Insecta , Mice , Mice, Inbred BALB C , Superinfection/prevention & control , Vaccination , Vaccines, Virus-Like Particle/immunology , Virus Replication/immunology
17.
Vaccines (Basel) ; 7(4)2019 Nov 17.
Article in English | MEDLINE | ID: mdl-31744208

ABSTRACT

: Influenza virus infections pre-dispose an individual to secondary pneumococcal infections, which represent a serious public health concern. Matching influenza vaccination was demonstrated helpful in preventing postinfluenza bacterial infections and associated illnesses in humans. Yet, the impact of influenza hemagglutinin (HA)-specific immunity alone in this dual-infection scenario remains elusive. In the present study, we assessed the protective effect of neutralizing and non-neutralizing anti-hemagglutinin immunity in a BALB/c influenza-pneumococcus superinfection model. Our immunogens were insect cell-expressed hemagglutinin-Gag virus-like particles that had been differentially-treated for the inactivation of bioprocess-related baculovirus impurities. We evaluated the potential of several formulations to restrain the primary infection with vaccine-matched or -mismatched influenza strains and secondary bacterial replication. In addition, we investigated the effect of anti-HA immunity on the interferon status in mouse lungs prior to bacterial challenge. In our experimental setup, neutralizing anti-HA immunity provided significant but incomplete protection from postinfluenza bacterial superinfection, despite effective control of viral replication. In view of this, it was surprising to observe a survival advantage with non-neutralizing adaptive immunity when using a heterologous viral challenge strain. Our findings suggest that both neutralizing and non-neutralizing anti-HA immunity can reduce disease and mortality caused by postinfluenza pneumococcal infections.

18.
Int J Mol Sci ; 20(3)2019 Jan 27.
Article in English | MEDLINE | ID: mdl-30691228

ABSTRACT

The baculovirus-insect cell expression system is a popular tool for the manufacturing of various attractive recombinant products. Over the years, several attempts have been made to engineer and further improve this production platform by targeting host or baculoviral genes by RNA interference. In this study, an inducible knockdown system was established in insect (Sf9) cells by combining an artificial microRNA precursor mimic of baculoviral origin and the bacteriophage T7 transcription machinery. Four structurally different artificial precursor constructs were created and tested in a screening assay. The most efficient artificial microRNA construct resulted in a 69% reduction in the fluorescence intensity of the target enhanced yellow fluorescent protein (eYFP). Next, recombinant baculoviruses were created carrying either the selected artificial precursor mimic under the transcriptional control of the T7 promoter or solely the T7 RNA polymerase under a baculoviral promoter. Upon co-infecting Sf9 cells with these two viruses, the fluorescence intensity of eYFP was suppressed by ~30⁻40% on the protein level. The reduction in the target mRNA level was demonstrated with real-time quantitative PCR. The presented inducible knockdown system may serve as an important and valuable tool for basic baculovirus-insect cell research and for the improvement of production processes using this platform.


Subject(s)
Bacteriophage T7/genetics , Baculoviridae/genetics , Lepidoptera/virology , MicroRNAs/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophage T7/enzymology , DNA-Directed RNA Polymerases/metabolism , Gene Knockdown Techniques , Genetic Engineering , Lepidoptera/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Sf9 Cells , Viral Proteins/metabolism
19.
J Chromatogr A ; 1487: 89-99, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28110946

ABSTRACT

The rapid quantification of enveloped virus-like particles (VLPs) requires orthogonal methods to obtain reliable results. Three methods-nanoparticle tracking analysis (NTA), size-exclusion HPLC (SE-HPLC) with UV detection, and detection with multi-angle light scattering (MALS)-for quantification of enveloped VLPs have been compared, and the lower and upper limits of detection and quantification have been evaluated. NTA directly counts the enveloped VLPs, and a particle number is obtained with a lower limit of detection (LLOD) of 1.7×107part/mL and lower limit of quantification (LLOQ) of 3.4×108part/mL. SE-HPLC with UV detection was calibrated with standards characterized by NTA, and a LLOD of 6.9×109part/mL and LLOQ of 2.1×1010part/mL were found. SE-HPLC with MALS does not require a pre-calibrated sample because with a spherical model based on the Rayleigh-Gans-Debye approximation, the particle concentration can be directly deduced from the scattered light. A LLOD of 4.8×108part/mL and LLOQ of 2.1×109part/mL were measured and substantially lower compared to the UV method. The absolute particle concentration measured by SE-HPLC-MALS is one order of magnitude lower compared to measurement by NTA, which is explained by the wide size distribution of an enveloped VLP suspension. The model used for evaluation of light scattering data assumes monodisperse, homogeneous, and spherical particles.


Subject(s)
Chromatography, Gel , Nanoparticles/analysis , Virology/methods , Viruses/isolation & purification , Chromatography, High Pressure Liquid , Light , Limit of Detection , Nanoparticles/chemistry , Particle Size
20.
J Sep Sci ; 40(4): 979-990, 2017 02.
Article in English | MEDLINE | ID: mdl-27928907

ABSTRACT

The downstream processing of enveloped virus-like particles is very challenging because of the biophysical and structural similarity between correctly assembled particles and contaminating vesicular particles present in the feedstock. We used hydroxyl-functionalized polymethacrylate monoliths, providing hydrophobic and electrostatic binding contributions, for the purification of HIV-1 gag virus-like particles. The clarified culture supernatant was conditioned with ammonium sulfate and after membrane filtration loaded onto a 1 mL monolith. The binding capacity was 2 × 1012 /mL monolith and was only limited by the pressure drop. By applying either a linear or a step gradient elution, to decrease the ammonium sulfate concentration, the majority of double-stranded DNA (88-90%) and host cell protein impurities (39-61%) could be removed while the particles could be separated into two fractions. Proteomic analysis and evaluation of the p24 concentration showed that one fraction contained majority of the HIV-1 gag and the other fraction was less contaminated with proteins originated from intracellular compartments. We were able to process up to 92 bed volumes of conditioned loading material within 3 h and eluted in average 7.3 × 1011 particles per particle fraction, which is equivalent to 730 vaccination doses of 1 × 109 particles.


Subject(s)
Chemistry Techniques, Analytical/methods , Gene Products, gag/isolation & purification , HIV-1/isolation & purification , Cells, Cultured , Gene Products, gag/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Hydroxyl Radical/metabolism , Proteomics , Vaccines, Virus-Like Particle/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...