Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 198
1.
Oral Oncol ; 154: 106808, 2024 May 31.
Article En | MEDLINE | ID: mdl-38823172

BACKGROUND: An estimated 20% of patients with oral and oropharyngeal squamous cell carcinoma (OOSCC) have micrometastases (Mi) or isolated tumor cells (ITC) in the cervical lymph nodes that evade detection by standard histological evaluation of lymph node sections. Lymph node Mi and ITC could be one reason for regional recurrence after neck dissection. The aim of this study was to review the existing data regarding the impact of Mi on the survival of patients with OOSCC. METHODS: PubMed and the Cochrane Library were searched for articles reporting the impact of Mi and ITC on patient survival. Two authors independently assessed the methodological quality of retrieved studies using the Downs and Black index. Data were also extracted on study type, number of included patients, mode of histological analysis, statistical analysis, and prognostic impact. RESULTS: Sixteen articles with a total of 2064 patients were included in the review. Among the 16 included studies, eight revealed a statistically significant impact of Mi on at least one endpoint in the Kaplan-Meier and/or multivariate analysis. Three studies regarded Mi as Ma, while five studies found no impact of Mi on survival. Only one study demonstrated an impact of ITC on patient's prognosis in the univariate but not in the multivariate analysis. CONCLUSION: The majority of cases included in the review were patients with oral cancer. The findings provide low-certainty evidence that Mi negatively impacts survival. Data on ITC were scarcer, so no conclusions can be drawn about their effect on survival. The lower threshold to discriminate between Mi and ITC should be defined for OOSCC since the existing thresholds are based on data from different tumors. The histological, immunohistological, and anatomical characteristics of Mi and ITC in OOSCC as well as the effect of radiotherapy on Mi should be further investigated separately for oral and oropharyngeal carcinomas.

2.
NPJ Precis Oncol ; 8(1): 116, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783045

Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous malignancy that remains a significant challenge in clinical management due to frequent treatment failures and pronounced therapy resistance. While metabolic dysregulation appears to be a critical factor in this scenario, comprehensive analyses of the metabolic HNSCC landscape and its impact on clinical outcomes are lacking. This study utilized transcriptomic data from four independent clinical cohorts to investigate metabolic heterogeneity in HNSCC and define metabolic pathway-based subtypes (MPS). In HPV-negative HNSCCs, MPS1 and MPS2 were identified, while MPS3 was enriched in HPV-positive cases. MPS classification was associated with clinical outcome post adjuvant radio(chemo)therapy, with MPS1 consistently exhibiting the highest risk of therapeutic failure. MPS1 was uniquely characterized by upregulation of glycan (particularly chondroitin/dermatan sulfate) metabolism genes. Immunohistochemistry and pilot mass spectrometry imaging analyses confirmed this at metabolite level. The histological context and single-cell RNA sequencing data identified the malignant cells as key contributors. Globally, MPS1 was distinguished by a unique transcriptomic landscape associated with increased disease aggressiveness, featuring motifs related to epithelial-mesenchymal transition, immune signaling, cancer stemness, tumor microenvironment assembly, and oncogenic signaling. This translated into a distinct histological appearance marked by extensive extracellular matrix remodeling, abundant spindle-shaped cancer-associated fibroblasts, and intimately intertwined populations of malignant and stromal cells. Proof-of-concept data from orthotopic xenotransplants replicated the MPS phenotypes on the histological and transcriptome levels. In summary, this study introduces a metabolic pathway-based classification of HNSCC, pinpointing glycan metabolism-enriched MPS1 as the most challenging subgroup that necessitates alternative therapeutic strategies.

3.
Clin Transl Oncol ; 2024 Mar 17.
Article En | MEDLINE | ID: mdl-38558282

PURPOSE: Brain metastasis (BM) in colorectal cancer (CRC) is a rare event with poor prognosis. Apart from (K)RAS status and lung and bone metastasis no biomarkers exist to identify patients at risk. This study aimed to identify a gene expression signature associated with colorectal BM. METHODS: Three patient groups were formed: 1. CRC with brain metastasis (BRA), 2. exclusive liver metastasis (HEP) and, 3. non-metastatic disease (M0). RNA was extracted from primary tumors and mRNA expression was measured using a NanoString Panel (770 genes). Expression was confirmed by qPCR in a validation cohort. Statistical analyses including multivariate logistic regression followed by receiver operating characteristic (ROC) analysis were performed. RESULTS: EMILIN3, MTA1, SV2B, TMPRSS6, ACVR1C, NFAT5 and SMC3 were differentially expressed in BRA and HEP/M0 groups. In the validation cohort, differential NFAT5, ACVR1C and SMC3 expressions were confirmed. BRA patients showed highest NFAT5 levels compared to HEP/M0 groups (global p = 0.02). High ACVR1C expression was observed more frequently in the BRA group (42.9%) than in HEP (0%) and M0 (7.1%) groups (global p = 0.01). High SMC3 expressions were only detectable in the BRA group (global p = 0.003). Only patients with BM showed a combined high expression of NFAT5, ACVR1C or SMC3 as well as of all three genes. ROC analysis revealed a good prediction of brain metastasis by the three genes (area under the curve (AUC) = 0.78). CONCLUSIONS: The NFAT5, ACVR1C and SMC3 gene expression signature is associated with colorectal BM. Future studies should further investigate the importance of this biomarker signature.

4.
Pathol Oncol Res ; 30: 1611590, 2024.
Article En | MEDLINE | ID: mdl-38605929

Lung cancer is a paradigm for a genetically driven tumor. A variety of drugs were developed targeting specific biomarkers requiring testing for tumor genetic alterations in relevant biomarkers. Different next-generation sequencing technologies are available for library generation: 1) anchored multiplex-, 2) amplicon based- and 3) hybrid capture-based-PCR. Anchored multiplex PCR-based sequencing was investigated for routine molecular testing within the national Network Genomic Medicine Lung Cancer (nNGM). Four centers applied the anchored multiplex ArcherDX-Variantplex nNGMv2 panel to re-analyze samples pre-tested during routine diagnostics. Data analyses were performed by each center and compiled centrally according to study design. Pre-defined standards were utilized, and panel sensitivity was determined by dilution experiments. nNGMv2 panel sequencing was successful in 98.9% of the samples (N = 90). With default filter settings, all but two potential MET exon 14 skipping variants were identified at similar allele frequencies. Both MET variants were found with an adapted calling filter. Three additional variants (KEAP1, STK11, TP53) were called that were not identified in pre-testing analyses. Only total DNA amount but not a qPCR-based DNA quality score correlated with average coverage. Analysis was successful with a DNA input as low as 6.25 ng. Anchored multiplex PCR-based sequencing (nNGMv2) and a sophisticated user-friendly Archer-Analysis pipeline is a robust and specific technology to detect tumor genetic mutations for precision medicine of lung cancer patients.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Kelch-Like ECH-Associated Protein 1/genetics , Multiplex Polymerase Chain Reaction , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Mutation/genetics , High-Throughput Nucleotide Sequencing , Biomarkers , DNA
5.
Eur J Cancer ; 203: 114046, 2024 May.
Article En | MEDLINE | ID: mdl-38626513

For decades, treatment of advanced biliary tract cancer (BTC) was confined to the use of chemotherapy. In recent years however, the number of therapeutic options available for patients with unresectable BTC have drastically increased, with immunotherapy and targeted treatment gradually joining the ranks of guideline-recommended treatment regimens. The aim of the present review is to summarise the current knowledge on unresectable BTC focusing on epidemiology, anatomical distribution and current strategies for systemic treatment. We further outline ongoing clinical trials and provide an outlook on future therapeutic interventions. In the realm of gastrointestinal malignancies, the increasing number of systemic treatment options for BTC is finally delivering on the longstanding commitment to personalised oncology. This emphasises the need for considering a comprehensive genomic-based pathology assessment right from the initial diagnosis to fully leverage the expanding array of therapeutic options that have recently become accessible.


Biliary Tract Neoplasms , Humans , Biliary Tract Neoplasms/therapy , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/pathology , Immunotherapy/methods , Molecular Targeted Therapy/methods
7.
BMC Cancer ; 24(1): 234, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378472

BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARG) is a member of the nuclear receptor family. It is involved in the regulation of adipogenesis, lipid metabolism, insulin sensitivity, vascular homeostasis and inflammation. In addition, PPARG agonists, known as thiazolidinediones, are well established in the treatment of type 2 diabetes mellitus. PPARGs role in cancer is a matter of debate, as pro- and anti-tumour properties have been described in various tumour entities. Currently, the specific role of PPARG in patients with colorectal cancer (CRC) is not fully understood. MATERIAL AND METHODS: The prognostic impact of PPARG expression was investigated by immunohistochemistry in a case-control study using a matched pair selection of CRC tumours (n = 246) with either distant metastases to the liver (n = 82), lung (n = 82) or without distant metastases (n = 82). Its effect on proliferation as well as the sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU) was examined after activation, inhibition, and transient gene knockdown of PPARG in the CRC cell lines SW403 and HT29. RESULTS: High PPARG expression was significantly associated with pulmonary metastasis (p = 0.019). Patients without distant metastases had a significantly longer overall survival with low PPARG expression in their tumours compared to patients with high PPARG expression (p = 0.045). In the pulmonary metastasis cohort instead, a trend towards longer survival was observed for patients with high PPARG expression in their tumour (p = 0.059). Activation of PPARG by pioglitazone and rosiglitazone resulted in a significant dose-dependent increase in proliferation of CRC cell lines. Inhibition of PPARG by its specific inhibitor GW9662 and siRNA-mediated knockdown of PPARG significantly decreased proliferation. Activating PPARG significantly increased the CRC cell lines sensitivity to 5-FU while its inhibition decreased it. CONCLUSION: The prognostic effect of PPARG expression depends on the metastasis localization in advanced CRC patients. Activation of PPARG increased malignancy associated traits such as proliferation in CRC cell lines but also increases sensitivity towards the chemotherapeutic agent 5-FU. Based on this finding, a combination therapy of PPARG agonists and 5-FU-based chemotherapy constitutes a promising strategy which should be further investigated.


Colorectal Neoplasms , Diabetes Mellitus, Type 2 , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , PPAR gamma/agonists , Diabetes Mellitus, Type 2/drug therapy , Case-Control Studies , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic
8.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article En | MEDLINE | ID: mdl-38397025

Advances in molecular tumor diagnostics have transformed cancer care. However, it remains unclear whether precision oncology has the same impact and transformative nature across all malignancies. We conducted a retrospective analysis of patients with human papillomavirus (HPV)-related gynecologic malignancies who underwent comprehensive molecular profiling and subsequent discussion at the interdisciplinary Molecular Tumor Board (MTB) of the University Hospital, LMU Munich, between 11/2017 and 06/2022. We identified a total cohort of 31 patients diagnosed with cervical (CC), vaginal or vulvar cancer. Twenty-two patients (fraction: 0.71) harbored at least one mutation. Fifteen patients (0.48) had an actionable mutation and fourteen (0.45) received a recommendation for a targeted treatment within the MTB. One CC patient received a biomarker-guided treatment recommended by the MTB and achieved stable disease on the mTOR inhibitor temsirolimus for eight months. Factors leading to non-adherence to MTB recommendations in other patient cases included informed patient refusal, rapid deterioration, stable disease, or use of alternative targeted but biomarker-agnostic treatments such as antibody-drug conjugates or checkpoint inhibitors. Despite a remarkable rate of actionable mutations in HPV-related gynecologic malignancies at our institution, immediate implementation of biomarker-guided targeted treatment recommendations remained low, and access to targeted treatment options after MTB discussion remained a major challenge.


Genital Neoplasms, Female , Papillomavirus Infections , Vulvar Neoplasms , Humans , Female , Vulvar Neoplasms/genetics , Vulvar Neoplasms/therapy , Vulvar Neoplasms/pathology , Genital Neoplasms, Female/drug therapy , Genital Neoplasms, Female/genetics , Precision Medicine , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Retrospective Studies , Biomarkers
9.
Pathologie (Heidelb) ; 45(2): 133-139, 2024 Mar.
Article De | MEDLINE | ID: mdl-38315198

With the advancements in precision medicine, the demands on pathological diagnostics have increased, requiring standardized, quantitative, and integrated assessments of histomorphological and molecular pathological data. Great hopes are placed in artificial intelligence (AI) methods, which have demonstrated the ability to analyze complex clinical, histological, and molecular data for disease classification, biomarker quantification, and prognosis estimation. This paper provides an overview of the latest developments in pathology AI, discusses the limitations, particularly concerning the black box character of AI, and describes solutions to make decision processes more transparent using methods of so-called explainable AI (XAI).


Artificial Intelligence , Pathology, Molecular , Hope , Precision Medicine
10.
Int J Surg Pathol ; : 10668969241229342, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38303519

The prognostic role of tumor cells in pancreatic ductal adenocarcinoma (PDAC) of the pancreatic head with direct microscopic infiltration (DMI) or in close proximity (≤1 mm) to the resection margin (RM) remains unclear. This single-center, retrospective study included specimens from 75 patients who underwent oncological resection of pancreatic head PDAC between February 2013 and July 2020. Two pathologists independently re-measured the distance between tumors and the multiple RMs. The impact of RM involvement for DMI, tumor cells within ≤1 mm, in general, and for individual RMs on overall survival (OS) and development of distant pulmonary (PM) and hepatic (HM) metastasis was analyzed. DMI of RMs was significantly associated with a shorter OS (median 5 vs 19 months, P = .02). The presence of tumor cells within ≤1 mm of RMs yielded a negative impact on OS with a trend toward significance (median 9 vs 21 months, P = .09). DMI and tumor cells within ≤1 mm of the pancreatic transection margin (PRM), individually, had a significant negative impact on OS (median 4 vs 19 months and 6 vs 19 months, P < .05), but not for any other individual RM. RM involvement of ≤1 mm of only the vascular circumferential resection margin (VCRM) resulted in a shorter time to HM development (P = 0.05). DMI of the posterior circumferential resection margin (PCRM) and VCRM, individually, showed shorter time to PM (P < .05). Potential clinical considerations include extended intraoperative evaluation of the PRM (1 mm) and intensified preoperative prediction of R1 resection as a basis for neoadjuvant therapy.

11.
Article En | MEDLINE | ID: mdl-38281880

PURPOSE: This study describes the morphologic and phenotypic spatial heterogeneity of tumor cells and the tissue microenvironment (TME), focusing on immune infiltration in OSCCs. STUDY DESIGN: Patients with OSCCs and planned surgical tumor resection were eligible for the study. Two biopsies each from the tumor center and the tumor rim were obtained. Immunohistochemical characterization of tumor and immune cells was performed using a panel of immunohistochemical markers. RESULTS: Thirty-six biopsies were obtained from the 9 patients. All patients showed an individual marker expression profile with ITH. Within the same biopsy, the CPS and TPS scores showed relevant variations in PD-L1 expression. Comparisons between the tumor center and rim revealed significant differences in the up/downregulation of p53. Marker expression of patients with recurrences clustered similarly, with the higher expression of FoxP3, IDO, CD4, CD68, and CD163 at the tumor rim. CONCLUSION: OSCCs were found to exhibit relevant ITH involving both tumor cells and TME, suggesting that biomarker analysis of multiple tumor regions may be helpful for clinical decision making and tumor characterization. The analysis of multiple spots within a biopsy is recommended for a reliable determination of PD-L1 expression and other biomarkers, impacting current clinical assessments.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/metabolism , B7-H1 Antigen , Lymphocytes, Tumor-Infiltrating/metabolism , Biomarkers, Tumor/metabolism , Prognosis , Tumor Microenvironment
12.
Pathol Res Pract ; 254: 155129, 2024 Feb.
Article En | MEDLINE | ID: mdl-38232629

Epithelial-mesenchymal transition (EMT), angiogenesis, cell adhesion and extracellular matrix (ECM) interaction are essential for colorectal cancer (CRC) metastasis. Low grade mucinous neoplasia of the appendix (LAMN) and its advanced state low grade pseudomyxoma peritonei (lgPMP) show local aggressiveness with very limited metastatic potential as opposed to CRC. To better understand the underlying processes that foster or impede metastatic spread, we compared LAMN, lgPMP, and CRC with respect to their molecular profile with subsequent pathway analysis. LAMN, lgPMP and (mucinous) CRC cases were subjected to transcriptomic analysis utilizing Poly(A) RNA sequencing. Successfully sequenced cases (LAMN n = 10, 77%, lgPMP n = 13, 100% and CRC n = 8, 100%) were investigated using bioinformatic and statistical tests (differential expression analysis, hierarchical clustering, principal component analysis and gene set enrichment analysis). We identified a gene signature of 28 genes distinguishing LAMN, lgPMP and CRC neoplasias. Ontology analyses revealed that multiple pathways including EMT, ECM interaction and angiogenesis are differentially regulated. Fifty-three significantly differentially regulated gene sets were identified between lgPMP and CRC followed by CRC vs. LAMN (n = 21) and lgPMP vs. LAMN (n = 16). Unexpectedly, a substantial enrichment of the EMT gene set was observed in lgPMP vs. LAMN (FDR=0.011) and CRC (FDR=0.004). Typical EMT markers were significantly upregulated (Vimentin, TWIST1, N-Cadherin) or downregulated (E-Cadherin) in lgPMP. However, MMP1 and MMP3 levels, associated with EMT, ECM and metastasis, were considerably higher in CRC. We show that the different tumor biological behaviour and metastatic spread pattern of midgut malignancies is reflected in a different gene expression profile. We revealed a strong activation of the EMT program in non-metastasizing lgPMP vs. CRC. Hence, although EMT is considered a key step in hematogenous spread, successful EMT does not necessarily lead to hematogenous dissemination. This emphasizes the need for further pathway analyses and forms the basis for mechanistic and therapy-targeting research.


Colorectal Neoplasms , Peritoneal Neoplasms , Pseudomyxoma Peritonei , Humans , Pseudomyxoma Peritonei/genetics , Transcriptome , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/pathology , Gene Expression Profiling , Cell Line, Tumor , Cell Movement
13.
Annu Rev Pathol ; 19: 541-570, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-37871132

The rapid development of precision medicine in recent years has started to challenge diagnostic pathology with respect to its ability to analyze histological images and increasingly large molecular profiling data in a quantitative, integrative, and standardized way. Artificial intelligence (AI) and, more precisely, deep learning technologies have recently demonstrated the potential to facilitate complex data analysis tasks, including clinical, histological, and molecular data for disease classification; tissue biomarker quantification; and clinical outcome prediction. This review provides a general introduction to AI and describes recent developments with a focus on applications in diagnostic pathology and beyond. We explain limitations including the black-box character of conventional AI and describe solutions to make machine learning decisions more transparent with so-called explainable AI. The purpose of the review is to foster a mutual understanding of both the biomedical and the AI side. To that end, in addition to providing an overview of the relevant foundations in pathology and machine learning, we present worked-through examples for a better practical understanding of what AI can achieve and how it should be done.


Artificial Intelligence , Precision Medicine , Humans
14.
J Thorac Oncol ; 19(5): 803-817, 2024 May.
Article En | MEDLINE | ID: mdl-38096950

INTRODUCTION: Programmed death-ligand 1 expression currently represents the only validated predictive biomarker for immune checkpoint inhibition in metastatic NSCLC in the clinical routine, but it has limited value in distinguishing responses. Assessment of KRAS and TP53 mutations (mut) as surrogate for an immunosupportive tumor microenvironment (TME) might help to close this gap. METHODS: A total of 696 consecutive patients with programmed death-ligand 1-high (≥50%), nonsquamous NSCLC, having received molecular testing within the German National Network Genomic Medicine Lung Cancer between 2017 and 2020, with Eastern Cooperative Oncology Group performance status less than or equal to 1 and pembrolizumab as first-line palliative treatment, were included into this retrospective cohort analysis. Treatment efficacy and outcome according to KRAS/TP53 status were correlated with TME composition and gene expression analysis of The Cancer Genome Atlas lung adenocarcinoma cohort. RESULTS: Proportion of KRASmut and TP53mut was 53% (G12C 25%, non-G12C 28%) and 51%, respectively. In KRASmut patients, TP53 comutations increased response rates (G12C: 69.7% versus 46.5% [TP53mut versus wild-type (wt)], p = 0.004; non-G12C: 55.4% versus 39.5%, p = 0.03), progression-free survival (G12C: hazard ratio [HR] = 0.59, p = 0.009, non-G12C: HR = 0.7, p = 0.047), and overall survival (G12C: HR = 0.72, p = 0.16, non-G12C: HR = 0.56, p = 0.002), whereas no differences were observed in KRASwt patients. After a median follow-up of 41 months, G12C/TP53mut patients experienced the longest progression-free survival and overall survival (33.7 and 65.3 mo), which correlated with high tumor-infiltrating lymphocyte densities in the TME and up-regulation of interferon gamma target genes. Proinflammatory pathways according to TP53 status (mut versus wt) were less enhanced and not different in non-G12C and KRASwt, respectively. CONCLUSIONS: G12C/TP53 comutations identify a subset of patients with a very favorable long-term survival with immune checkpoint inhibitor monotherapy, mediated by highly active interferon gamma signaling in a proinflammatory TME.


Antibodies, Monoclonal, Humanized , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Proto-Oncogene Proteins p21(ras) , Tumor Suppressor Protein p53 , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Male , Female , Antibodies, Monoclonal, Humanized/therapeutic use , Tumor Suppressor Protein p53/genetics , Aged , Retrospective Studies , Middle Aged , Germany , Antineoplastic Agents, Immunological/therapeutic use , Aged, 80 and over , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Adult , Treatment Outcome
15.
Eur J Cancer ; 197: 113474, 2024 Jan.
Article En | MEDLINE | ID: mdl-38100920

OBJECTIVES: Thyroid transcription factor 1 (TTF-1) is a well-established independent prognostic factor in lung adenocarcinoma (LUAD), irrespective of stage. This study aims to determine if TTF-1's prognostic impact is solely based on histomorphological differentiation (tumor grading) or if it independently relates to a biologically more aggressive phenotype. We analyzed a large bi-centric LUAD cohort to accurately assess TTF-1's prognostic value in relation to tumor grade. PATIENTS AND METHODS: We studied 447 patients with resected LUAD from major German lung cancer centers (Berlin and Cologne), correlating TTF-1 status and grading with clinical, pathologic, and molecular data, alongside patient outcomes. TTF-1's impact was evaluated through univariate and multivariate Cox regression. Causal graph analysis was used to identify and account for potential confounders, improving the statistical estimation of TTF-1's predictive power for clinical outcomes. RESULTS: Univariate analysis revealed TTF-1 positivity associated with significantly longer disease-free survival (DFS) (median log HR -0.83; p = 0.018). Higher tumor grade showed a non-significant association with shorter DFS (median log HR 0.30; p = 0,62 for G1 to G2 and 0.68; p = 0,34 for G2 to G3). In multivariate analysis, TTF-1 positivity resulted in a significantly longer DFS (median log HR -0.65; p = 0.05) independent of all other parameters, including grading. Adjusting for potential confounders as indicated by the causal graph confirmed the superiority of TTF-1 over tumor grading in prognostics power. CONCLUSIONS: TTF-1 status predicts relapse and survival in LUAD independently of tumor grading. The prognostic power of tumor grading is limited to TTF-1-positive patients, and the effect size of TTF-1 surpasses that of tumor grading. We recommend including TTF1 status as a prognostic factor in the diagnostic guidelines of LUAD.


Adenocarcinoma of Lung , Lung Neoplasms , Humans , Thyroid Nuclear Factor 1/genetics , Neoplasm Grading , Neoplasm Staging , Neoplasm Recurrence, Local/pathology , Adenocarcinoma of Lung/pathology , Lung Neoplasms/pathology , Prognosis
16.
Cancers (Basel) ; 15(23)2023 Nov 26.
Article En | MEDLINE | ID: mdl-38067298

GATA2 deficiency is a heterogeneous, multisystem disorder associated with a high risk of developing myelodysplastic syndrome (MDS) and the progression to acute myeloid leukemia. The mechanisms underlying malignant transformation in GATA2 deficiency remain poorly understood, necessitating predictive markers to assess an individual's risk of progression and guide therapeutic decisions. In this study, we performed a systematic analysis of bone marrow biopsies from 57 pediatric MDS patients. Focusing on hematopoiesis and the hematopoietic niche, including its microenvironment, we used multiplex immunofluorescence combined with multispectral imaging, gene expression profiling, and multiplex RNA in situ hybridization. Patients with a GATA2 deficiency exhibited a dysregulated GATA2 transcriptional network. Disease progression (GATA2-EB, n = 6) was associated with increased GATA2 mRNA levels, restored expression of the GATA2 target EZH2, and increased H3K27me3. GATA2-EB was further characterized by the high expression of the anti-apoptotic protein BCL2, a feature absent in children with a GATA2 deficiency and refractory cytopenia of childhood (GATA2-RCC, n = 24) or other pediatric MDS subgroups (RCC, n = 17; MDS-EB, n = 10). The multispectral imaging analysis of additional BCL2 family members revealed significantly elevated Mediators of Apoptosis Combinatorial (MAC) scores in GATA2-EB patients. Taken together, our findings highlight the potential drivers of disease progression in GATA2 deficiency, particularly increased histone trimethylation and dysregulated apoptosis. Furthermore, upregulated BCL2 and EZH2 and increased MAC scores provide a strong rationale for the use of venetoclax and azacitidine in therapeutic regimens for GATA2-EB.

17.
Biomedicines ; 11(11)2023 Nov 20.
Article En | MEDLINE | ID: mdl-38002095

In renal cell carcinoma (RCC), accurate imaging methods are required for treatment planning and response assessment to therapy. In addition, there is an urgent need for new therapeutic options, especially in metastatic RCC. One way to combine diagnostics and therapy in a so-called theranostic approach is the use of radioligands directed against surface antigens. For instance, radioligands against prostate-specific membrane antigen (PSMA) have already been successfully used for diagnosis and radionuclide therapy of metastatic prostate cancer. Recent studies have demonstrated that PSMA is expressed not only in prostate cancer but also in the neovasculature of several solid tumors, which has raised hopes to use PSMA-guided theranostic approaches in other tumor entities, too. However, data on PSMA expression in different histopathological subtypes of RCC are sparse. Because a better understanding of PSMA expression in RCC is critical to assess which patients would benefit most from theranostic approaches using PSMA-targeted ligands, we investigated the expression pattern of PSMA in different subtypes of RCC on protein level. Immunohistochemical staining for PSMA was performed on formalin-fixed, paraffin-embedded archival material of major different histological subtypes of RCC (clear cell RCC (ccRCC)), papillary RCC (pRCC) and chromophobe RCC (cpRCC). The extent and intensity of PSMA staining were scored semi-quantitatively and correlated with the histological RCC subtypes. Group comparisons were calculated with the Kruskal-Wallis test. In all cases, immunoreactivity was detected only in the tumor-associated vessels and not in tumor cells. Staining intensity was the strongest in ccRCC, followed by cpRCC and pRCC. ccRCC showed the most diffuse staining pattern, followed by cpRCC and pRCC. Our results provide a rationale for PSMA-targeted theranostic approaches in ccRCC and cpRCC.

18.
Pathologie (Heidelb) ; 44(Suppl 2): 61-70, 2023 Nov.
Article En | MEDLINE | ID: mdl-37874379

Testing to detect mismatch repair deficiency (dMMR) and high-grade microsatellite instability (MSI-H) has become an integral part of the routine diagnostic workup for colorectal cancer (CRC). While MSI was initially considered to be a possible indicator of a hereditary disposition to cancer (Lynch syndrome, LS), today the prediction of the therapy response to immune checkpoint inhibitors (ICI) is in the foreground. Corresponding recommendations and testing algorithms are available for use in primary diagnosis (reviewed in: Rüschoff et al. 2021).Given the increasing importance for routine use and the expanding indication spectrum of ICI therapies for non-CRCs, such as endometrial, small intestinal, gastric, and biliary tract cancers, an updated review of dMMR/MSI testing is presented. The focus is on the challenges in the assessment of immunohistochemical stains and the value of PCR-based procedures, considering the expanded ICI indication spectrum. A practice-oriented flowchart for everyday diagnostic decision-making is provided that considers new data on the frequency and type of discordances between MMR-IHC and MSI-PCR findings, and the possible role of Next Generation Sequencing in clarifying them. Reference is made to the significance of systematic quality assurance measures (e.g., QuIP MSI portal and multicenter proficiency testing), including regular continued training and education.


Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , DNA Mismatch Repair/genetics , Microsatellite Instability , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Multicenter Studies as Topic
20.
Pathologie (Heidelb) ; 44(5): 301-310, 2023 Sep.
Article De | MEDLINE | ID: mdl-37548948

Testing to detect mismatch repair deficiency (dMMR) and high-grade microsatellite instability (MSI-H) has become an integral part of the routine diagnostic workup for colorectal cancer (CRC). While MSI was initially considered to be a possible indicator of a hereditary disposition to cancer (Lynch syndrome, LS), today the prediction of the therapy response to immune checkpoint inhibitors (ICI) is in the foreground. Corresponding recommendations and testing algorithms are available for use in primary diagnosis (reviewed in: Rüschoff et al. 2021).Given the increasing importance for routine use and the expanding indication spectrum of ICI therapies for non-CRCs, such as endometrial, small intestinal, gastric, and biliary tract cancers, an updated review of dMMR/MSI testing is presented. The focus is on the challenges in the assessment of immunohistochemical stains and the value of PCR-based procedures, considering the expanded ICI indication spectrum. A practice-oriented flowchart for everyday diagnostic decision-making is provided that considers new data on the frequency and type of discordances between MMR-IHC and MSI-PCR findings, and the possible role of Next Generation Sequencing in clarifying them. Reference is made to the significance of systematic quality assurance measures (e.g., QuIP MSI portal and multicenter proficiency testing), including regular continued training and education.


Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , DNA Mismatch Repair/genetics , Microsatellite Instability , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Multicenter Studies as Topic
...