Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20007, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973873

ABSTRACT

A typical ground investigation for characterizing geotechnical properties of soil requires sampling soils to test in a laboratory. Laboratory X-ray computed tomography (CT) has been used to non-destructively observe soils and characterize their properties using image processing, numerical analysis, or three-dimensional (3D) printing techniques based on scanned images; however, if it becomes possible to scan the soils in the ground, it may enable the characterization without sampling them. In this study, an in-situ X-ray CT scanning system comprising a drilling machine with an integrated CT scanner was developed. A model test was conducted on gravel soil to verify if the equipment can drill and scan the soil underground. Moreover, image processing was performed on acquired 3D CT images to verify the image quality; the particle morphology (particle size and shape characteristics) was compared with the results obtained for projected particles captured in a two-dimensional (2D) manner by a digital camera. The equipment successfully drilled to a target depth of 800 mm, and the soil was scanned at depths of 700, 750, and 800 mm. Image processing results showed a reasonable agreement between the 3D and 2D particle morphology images, and confirmed the feasibility of the in-situ X-ray CT scanning system.

2.
J Acoust Soc Am ; 149(6): 4000, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34241485

ABSTRACT

The sounding mechanism of a recorder-like air-jet instrument at low Strouhal number is numerically investigated by three-dimensional direct aeroacoustic simulation and acoustic simulation. Howe's energy corollary is applied to estimate the acoustic energy generation and absorption induced by an oscillating jet and vortex shedding. The quantitative results show that the main acoustic energy generation occurs in the jet downstream, and the absorption occurs in the jet upstream. It is found that the region defined by the Q-criterion identifies the main acoustic energy generation (absorption) region in the downstream (upstream) region of the jet. The results indicate that the vortex shedding mainly induced by the jet deflection gives additional contributions to the acoustic energy absorption. The shed vortices affect the temporal structure of the acoustic energy transfer, in particular, the timing of the double peaks with respect to the jet displacement. If we focus only on the air-jet, the dominant peak is observed when the jet crosses the edge from the inside to the outside of the pipe, as reported in previous experimental works. However, when we include the contributions of shed vortices, the dominant peak appears when the jet dives under the edge, which is consistent with the jet-drive model.

3.
Sensors (Basel) ; 20(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640611

ABSTRACT

It is important for construction companies to sustain a productive workforce without sacrificing its health and safety. This study aims to develop a practical judgement method to estimate the workload risk of individual construction workers. Based on studies, we developed a workload model comprising a hygrothermal environment, behavioral information, and the physical characteristics of workers). The construction workers' heart rate and physical activity were measured using the data collected from a wearable device equipped with a biosensor and an acceleration sensor. This study is the first report to use worker physical activity, age, and the wet bulb globe temperature (WBGT) to determine a worker's physical workload. The accuracy of this health risk judgment result was 89.2%, indicating that it is possible to easily judge the health risk of workers even in an environment where it is difficult to measure the subject in advance. The proposed model and its findings can aid in monitoring the health impacts of working conditions during construction activities, and thereby contribute toward determining workers' health damage. However, the sampled construction workers are 12 workers, further studies in other working conditions are required to accumulate more evidence and assure the accuracy of the models.


Subject(s)
Construction Industry , Judgment , Occupational Health , Wearable Electronic Devices , Workload , Adult , Exercise , Humans
4.
Lab Chip ; 11(4): 639-44, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21127789

ABSTRACT

This paper reports a novel combination of hydrophilic/hydrophobic materials for the evolution of liquid manipulation. Droplet generation based on a hydrophilic/hydrophobic mechanism is a promising method for highly accurate liquid manipulations. Although several droplet manipulation devices utilizing hydrophilic/hydrophobic patterns have been reported, it has been difficult to split fluid into droplets solely through hydrophilic/hydrophobic patterns in a microchannel. In this study, a material combination for fabricating hydrophilic/hydrophobic patterns was investigated and their wettability difference was enhanced for droplet generation. To improve hydrophilicity, we attempted to increase the surface area of silicon oxide through pulsed plasma chemical vapor deposition (PPCVD). To improve hydrophobicity, the damage to the hydrophobic patterns in the fabrication process was reduced. We successfully enhanced the difference in contact angles from 54.3° to 86.6° by combining the developed hydrophilic material and hydrophobic material. The developed material combination could successfully split fluid into a quantitative droplet of 14.1 nL in a microfluidic chip. Because the developed hydrophilic/hydrophobic combination enables the formation of a droplet with desirable shape in microchannels, the developed hydrophilic/hydrophobic combination is a promising component for lab-on-a-chip applications.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Microfluidics/methods , Wettability , Centrifugation , Hydrophobic and Hydrophilic Interactions , Oxides/chemistry , Silicon Compounds/chemistry
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 1): 051101, 2009 May.
Article in English | MEDLINE | ID: mdl-19518410

ABSTRACT

We investigate numerically and analytically the effects of conservation of total translational and angular momentum on the distribution of kinetic energy among particles in microcanonical particle systems with small number of degrees of freedom, specifically microclusters. Molecular dynamics simulations of microclusters with constant total energy and momenta, using Lennard-Jones, Morse, and Coulomb plus Born-Mayer-type potentials, show that the distribution of kinetic energy among particles can be inhomogeneous and depend on particle mass and position even in thermal equilibrium. Statistical analysis using a microcanonical measure taking into account of the additional conserved quantities gives theoretical expressions for kinetic energy as a function of the mass and position of a particle with only O(1/N;{2}) deviation from the Maxwell-Boltzmann distribution. These expressions fit numerical results well. Finally, we propose an intuitive interpretation for the inhomogeneity of the kinetic energy distributions.

6.
Phys Rev Lett ; 99(1): 014102, 2007 Jul 06.
Article in English | MEDLINE | ID: mdl-17678154

ABSTRACT

Overall homogeneity of temperature is a condition for thermal equilibrium, but, as is demonstrated by classical molecular dynamics simulations, the local temperatures of atoms in small, isolated crystalline clusters in microcanonical equilibrium are not uniform. The effective temperature determined from individual atomic velocity decreases with distance from the cluster center. It is argued that these effects are due to the conservation of angular and translational momentum. A general microcanonical expression is derived for the spatial dependence of the statistics of the kinetic energies of individual atoms; this fits the numerical observations well.

SELECTION OF CITATIONS
SEARCH DETAIL