Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Biosci Bioeng ; 137(6): 429-436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570219

ABSTRACT

Plant root-associated environments such as the rhizosphere, rhizoplane, and endosphere, are notably different from non-root-associated soil environments. However, the microbial dynamics in these spatially divided compartments remain unexplored. In this study, we propose a combinational analysis of single-cell genomics with 16S rRNA gene sequencing. This method enabled us to understand the entire soil microbiome and individual root-associated microorganisms. We applied this method to soybean microbiomes and revealed that their composition was different between the rhizoplane and rhizosphere in the early growth stages, but became more similar as growth progressed. In addition, a total of 610 medium- to high-quality single-amplified genomes (SAGs) were acquired, including plant growth-promoting rhizobacteria (PGPR) candidates while genomes with high GC content tended to be missed by SAGs. The whole-genome analyses of the SAGs suggested that rhizoplane-enriched Flavobacterium solubilizes organophosphate actively and Bacillus colonizes roots more efficiently. Single-cell genomics, together with 16S rRNA gene sequencing, enabled us to connect microbial taxonomy and function, and assess microorganisms at a strain resolution even in the complex soil microbiome.


Subject(s)
Glycine max , Microbiota , Plant Roots , RNA, Ribosomal, 16S , Rhizosphere , Single-Cell Analysis , Soil Microbiology , Glycine max/microbiology , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Flavobacterium/genetics , Flavobacterium/classification , Flavobacterium/metabolism
2.
mSphere ; 9(1): e0033723, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38170974

ABSTRACT

Deep-sea and subseafloor sedimentary environments host heterotrophic microbial communities that contribute to Earth's carbon cycling. However, the potential metabolic functions of individual microorganisms and their biogeographical distributions in hadal ocean sediments remain largely unexplored. In this study, we conducted single-cell genome sequencing on sediment samples collected from six sites (7,445-8,023 m water depth) along an approximately 500 km transect of the Japan Trench during the International Ocean Discovery Program Expedition 386. A total of 1,886 single-cell amplified genomes (SAGs) were obtained, offering comprehensive genetic insights into sedimentary microbial communities in surface sediments (<1 m depth) above the sulfate-methane transition zone along the Japan Trench. Our genome data set included 269 SAGs from Atribacterota JS1, the predominant bacterial clade in these hadal environments. Phylogenetic analysis classified SAGs into nine distinct phylotypes, whereas metagenome-assembled genomes were categorized into only two phylotypes, advancing JS1 diversity coverage through a single cell-based approach. Comparative genomic analysis of JS1 lineages from different habitats revealed frequent detection of genes related to organic carbon utilization, such as extracellular enzymes like clostripain and α-amylase, and ABC transporters of oligopeptide from Japan Trench members. Furthermore, specific JS1 phylotypes exhibited a strong correlation with in situ methane concentrations and contained genes involved in glycine betaine metabolism. These findings suggest that the phylogenomically diverse and novel Atribacterota JS1 is widely distributed in Japan Trench sediment, playing crucial roles in carbon cycling within the hadal sedimentary biosphere.IMPORTANCEThe Japan Trench represents tectonically active hadal environments associated with Pacific plate subduction beneath the northeastern Japan arc. This study, for the first time, documented a large-scale single-cell and metagenomic survey along an approximately 500 km transect of the Japan Trench, obtaining high-quality genomic information on hadal sedimentary microbial communities. Single-cell genomics revealed the predominance of diverse JS1 lineages not recoverable through conventional metagenomic binning. Their metabolic potential includes genes related to the degradation of organic matter, which contributes to methanogenesis in the deeper layers. Our findings enhance understanding of sedimentary microbial communities at water depths exceeding 7,000 m and provide new insights into the ecological role of biogeochemical carbon cycling in the hadal sedimentary biosphere.


Subject(s)
Bacteria , Microbiota , Japan , Phylogeny , Bacteria/genetics , Microbiota/genetics , Genomics , Water , Carbon , Methane
3.
iScience ; 26(6): 106842, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37250803

ABSTRACT

Some Wolbachia endosymbionts induce male killing, whereby male offspring of infected females are killed during development; however, the origin and diversity of the underlying mechanisms remain unclear. In this study, we identified a 76 kbp prophage region specific to male-killing Wolbachia hosted by the moth Homona magnanima. The prophage encoded a homolog of the male-killing gene oscar in Ostrinia moths and the wmk gene that induces various toxicities in Drosophila melanogaster. Upon overexpressing these genes in D. melanogaster, wmk-1 and wmk-3 killed all males and most females, whereas Hm-oscar, wmk-2, and wmk-4 had no impact on insect survival. Strikingly, co-expression of tandemly arrayed wmk-3 and wmk-4 killed 90% of males and restored 70% of females, suggesting their conjugated functions for male-specific lethality. While the male-killing gene in the native host remains unknown, our findings highlight the role of bacteriophages in male-killing evolution and differences in male-killing mechanisms among insects.

4.
Front Microbiol ; 14: 1133917, 2023.
Article in English | MEDLINE | ID: mdl-36910196

ABSTRACT

Obtaining complete and accurate bacterial genomes is vital for studying the characteristics of uncultured bacteria. Single-cell genomics is a promising approach for the culture-independent recovery of bacterial genomes from individual cells. However, single-amplified genomes (SAGs) often have fragmented and incomplete sequences due to chimeric and biased sequences introduced during the genome amplification process. To address this, we developed a single-cell amplified genome long-read assembly (scALA) workflow to construct complete circular SAGs (cSAGs) from long-read single-cell sequencing data of uncultured bacteria. We used the SAG-gel platform, which is both cost-effective and high-throughput, to obtain hundreds of short-read and long-read sequencing data for specific bacterial strains. The scALA workflow generated cSAGs by repeated in silico processing for sequence bias reduction and contig assembly. From 12 human fecal samples, including two cohabitant groups, scALA generated 16 cSAGs of three specifically targeted bacterial species: Anaerostipes hadrus, Agathobacter rectalis, and Ruminococcus gnavus. We discovered strain-specific structural variations shared among cohabiting hosts, while all cSAGs of the same species showed high homology in aligned genomic regions. A. hadrus cSAGs exhibited 10 kbp-long phage insertions, various saccharide metabolic capabilities, and different CRISPR-Cas systems in each strain. The sequence similarity of A. hadrus genomes did not necessarily correspond with orthologous functional genes, while host geographical regionality seemed to be highly related to gene possession. scALA allowed us to obtain closed circular genomes of specifically targeted bacteria from human microbiota samples, leading to an understanding of within-species diversities, including structural variations and linking mobile genetic elements, such as phages, to hosts. These analyses provide insight into microbial evolution, the adaptation of the community to environmental changes, and interactions with hosts. cSAGs constructed using this method can expand bacterial genome databases and our understanding of within-species diversities in uncultured bacteria.

5.
Microbiome ; 10(1): 220, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503599

ABSTRACT

BACKGROUND: Endozoicomonas bacteria symbiosis with various marine organisms is hypothesized as a potential indicator of health in corals. Although many amplicon analyses using 16S rRNA gene have suggested the diversity of Endozoicomonas species, genome analysis has been limited due to contamination of host-derived sequences and difficulties in culture and metagenomic analysis. Therefore, the evolutionary and functional potential of individual Endozoicomonas species symbiotic with the same coral species remains unresolved. RESULTS: In this study, we applied a novel single-cell genomics technique using droplet microfluidics to obtain single-cell amplified genomes (SAGs) for uncultured coral-associated Endozoicomonas spp. We obtained seven novel Endozoicomonas genomes and quantitative bacterial composition from Acropora tenuis corals at four sites in Japan. Our quantitative 16S rRNA gene and comparative genomic analysis revealed that these Endozoicomonas spp. belong to different lineages (Clade A and Clade B), with widely varying abundance among individual corals. Furthermore, each Endozoicomonas species possessed various eukaryotic-like genes in clade-specific genes. It was suggested that these eukaryotic-like genes might have a potential ability of different functions in each clade, such as infection of the host coral or suppression of host immune pathways. These Endozoicomonas species may have adopted different host adaptation strategies despite living symbiotically on the same coral. CONCLUSIONS: This study suggests that coral-associated Endozoicomonas spp. on the same species of coral have different evolutional strategies and functional potentials in each species and emphasizes the need to analyze the genome of each uncultured strain in future coral-Endozoicomonas relationships studies. Video Abstract.


Subject(s)
Anthozoa , Gammaproteobacteria , Animals , Anthozoa/microbiology , RNA, Ribosomal, 16S/genetics , Host Adaptation , Gammaproteobacteria/genetics , Symbiosis , Bacteria , Genomics , Coral Reefs
6.
Front Microbiol ; 13: 1024640, 2022.
Article in English | MEDLINE | ID: mdl-36406415

ABSTRACT

Plant growth-promoting microbes (PGPMs) have attracted increasing attention because they may be useful in increasing crop yield in a low-input and sustainable manner to ensure food security. Previous studies have attempted to understand the principles underlying the rhizosphere ecology and interactions between plants and PGPMs using ribosomal RNA sequencing, metagenomic sequencing, and genome-resolved metagenomics; however, these approaches do not provide comprehensive genomic information for individual species and do not facilitate detailed analyses of plant-microbe interactions. In the present study, we developed a pipeline to analyze the genomic diversity of the rice rhizosphere microbiome at single-cell resolution. We isolated microbial cells from paddy soil and determined their genomic sequences by using massively parallel whole-genome amplification in microfluidic-generated gel capsules. We successfully obtained 3,237 single-amplified genomes in a single experiment, and these genomic sequences provided insights into microbial functions in the paddy ecosystem. Our approach offers a promising platform for gaining novel insights into the roles of microbes in the rice rhizomicrobiome and to develop microbial technologies for improved and sustainable rice production.

7.
Cancers (Basel) ; 14(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36358821

ABSTRACT

Cancer cachexia exerts a negative clinical influence on patients with advanced non-small-cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICI). The prognostic impact of body weight change during ICI treatment remains unknown. The gut microbiota (GM) is a key contributor to the response to ICI therapy in cancer patients. However, the association between cancer cachexia and GM and their association with the response to ICIs remains unexplored. This study examined the association of cancer cachexia with GM composition and assessed the impact of GM on clinical outcomes in patients with NSCLC treated with ICIs. In this observational, prospective study, which included 113 Japanese patients with advanced NSCLC treated with ICIs, the prevalence of cachexia was 50.4% (57/113). The median progression-free survival (PFS) and overall survival (OS) were significantly shorter in the cachexia group than in the non-cachexia group (4.3 vs. 11.6 months (p = 0.003) and 12.0 months vs. not reached (p = 0.02), respectively). A multivariable analysis revealed that baseline cachexia was independently associated with a shorter PFS. Moreover, a gain in body weight from the baseline (reversible cachexia) was associated with a significantly longer PFS and OS compared to irreversible cachexia. Microbiome profiling with 16S rRNA analysis revealed that the cachexia group presented an overrepresentation of the commensal bacteria, Escherichia-Shigella and Hungatella, while the non-cachexia group had a preponderance of Anaerostipes, Blautia, and Eubacterium ventriosum. Anaerostipes and E. ventriosum were associated with longer PFS and OS. Moreover, a cachexia status correlated with the systemic inflammatory marker-derived-neutrophil-to-lymphocytes ratio (dNLR) and Lung Immune Prognostic Index (LIPI) indexes. Our study demonstrates that cachexia and longitudinal bodyweight change have a prognostic impact on patients with advanced NSCLC treated with ICI therapy. Moreover, our study demonstrates that bacteria associated with ICI resistance are also linked to cachexia. Targeted microbiota interventions may represent a new type of treatment to overcome cachexia in patients with NSCLC.

8.
Nutrients ; 14(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35631219

ABSTRACT

The gut microbiota is closely related to good health; thus, there have been extensive efforts dedicated to improving health by controlling the gut microbial environment. Probiotics and prebiotics are being developed to support a healthier intestinal environment. However, much work remains to be performed to provide effective solutions to overcome individual differences in the gut microbial community. This study examined the importance of nutrients, other than dietary fiber, on the survival of gut bacteria in high-health-conscious populations. We found that vitamin B1, which is an essential nutrient for humans, had a significant effect on the survival and competition of bacteria in the symbiotic gut microbiota. In particular, sufficient dietary vitamin B1 intake affects the relative abundance of Ruminococcaceae, and these bacteria have proven to require dietary vitamin B1 because they lack the de novo vitamin B1 synthetic pathway. Moreover, we demonstrated that vitamin B1 is involved in the production of butyrate, along with the amount of acetate in the intestinal environment. We established the causality of possible associations and obtained mechanical insight, through in vivo murine experiments and in silico pathway analyses. These findings serve as a reference to support the development of methods to establish optimal intestinal environment conditions for healthy lifestyles.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Animals , Bacteria/metabolism , Diet , Dietary Fiber , Fatty Acids, Volatile/metabolism , Humans , Mice , Thiamine
9.
N Biotechnol ; 70: 102-108, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35636700

ABSTRACT

The demand for novel, robust microbial biocatalysts for use in industrial and pharmaceutical applications continues to increase rapidly. As a result, there is a need to develop advanced tools and technologies to exploit the vast metabolic potential of unculturable microorganisms found in various environments. Single-cell and functional metagenomics studies can explore the enzymatic potential of entire microbial communities in a given environment without the need to culture the microorganisms. This approach has contributed substantially to the discovery of unique microbial genes for industrial and medical applications. Functional metagenomics involves the extraction of microbial DNA directly from environmental samples, constructing expression libraries comprising the entire microbial genome, and screening of the libraries for the presence of desired phenotypes. In this study, lipolytic enzymes from the Red Sea were targeted. A high-throughput single-cell microfluidic platform combined with a laser-based fluorescent screening bioassay was employed to discover new genes encoding lipolytic enzymes. Analysis of the metagenomic library led to the identification of three microbial genes encoding lipases based on their functional similarity and sequence homology to known lipases. The results demonstrated that microfluidics is a robust technology that can be used for screening in functional metagenomics. The results also indicate that the Red Sea is a promising, under-investigated source of new genes and gene products.


Subject(s)
Metagenomics , Microbiota , Enzymes , Gene Library , Lipase/genetics , Lipase/metabolism , Metagenome
10.
Sci Rep ; 12(1): 4443, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35292746

ABSTRACT

Culture-independent analysis with high-throughput sequencing has been widely used to characterize bacterial communities. However, signals derived from non-viable bacteria and non-cell DNA may inhibit its characterization. Here, we present a method for viable bacteria-targeted single-cell genome sequencing, called PMA-SAG-gel, to obtain comprehensive whole-genome sequences of surviving uncultured bacteria from microbial communities. PMA-SAG-gel uses gel matrixes that enable sequential enzymatic reactions for cell lysis and genome amplification of viable single cells from the microbial communities. PMA-SAG-gel removed the single-amplified genomes (SAGs) derived from dead bacteria and enabled selective sequencing of viable bacteria in the model samples of Escherichia coli and Bacillus subtilis. Next, we demonstrated the recovery of near-complete SAGs of eight oxygen-tolerant bacteria, including Bacteroides spp. and Phocaeicola spp., from 1331 human feces SAGs. We found the presence of two different strains in each species and identified their specific genes to investigate the metabolic functions. The survival profile of an entire population at the strain level will provide the information for understanding the characteristics of the surviving bacteria under the specific environments or sample processing and insights for quality assessment of live bacterial products or fecal microbiota transplantation and for understanding the effect of antimicrobial treatments.


Subject(s)
Microbiota , Bacteria/genetics , Escherichia coli/genetics , Fecal Microbiota Transplantation , Feces/microbiology , High-Throughput Nucleotide Sequencing , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
ISME Commun ; 2(1): 92, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-37938694

ABSTRACT

Single-cell genomics is applied to environmental samples as a method to solve the problems of current metagenomics. However, in the fluorescence-activated cell sorting-based cell isolation and subsequent whole genome amplification, the sorting efficiency and the sequence quality are greatly affected by the type of target environment, limiting its adaptability. Here, we developed an improved single-cell genomics platform, named SAG-gel, which utilizes gel beads for single-cell isolation, lysis, and whole genome amplification. To validate the versatility of SAG-gel, single-cell genome sequencing was performed with model bacteria and microbial samples collected from eight environmental sites, including soil and seawater. Gel beads enabled multiple lysis treatments. The genome coverage with model bacteria was improved by 9.1-25%. A total of 734 single amplified genomes were collected from the diverse environmental samples, and almost full-length 16S rRNA genes were recovered from 57.8% of them. We also revealed two marine Rhodobacter strains harboring nearly identical 16S rRNA genes but having different genome contents. In addition, searching for viral sequences elucidated the virus-host linkage over the sampling sites, revealing the geographic distribution and diverse host range of viruses.

12.
PNAS Nexus ; 1(1): pgab007, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36712793

ABSTRACT

The production of bioactive metabolites is increasingly recognized as an important function of host-associated bacteria. An example is defensive symbiosis that might account for much of the chemical richness of marine invertebrates including sponges (Porifera), 1 of the oldest metazoans. However, most bacterial members of sponge microbiomes have not been cultivated or sequenced, and therefore, remain unrecognized. Unequivocally linking metabolic functions to a cellular source in sponge microbiomes is, therefore, a challenge. Here, we report an analysis pipeline of microfluidic encapsulation, Raman microscopy, and integrated digital genomics (MERMAID) for an efficient identification of uncultivated producers. We applied this method to the chemically rich bacteriosponge (sponge that hosts a rich bacterial community) Theonella swinhoei, previously shown to contain 'Entotheonella' symbionts that produce most of the bioactive substances isolated from the sponge. As an exception, the antifungal aurantosides had remained unassigned to a source. Raman-guided single-bacterial analysis and sequencing revealed a cryptic, distinct multiproducer, 'Candidatus Poriflexus aureus' from a new Chloroflexi lineage as the aurantoside producer. Its exceptionally large genome contains numerous biosynthetic loci and suggested an even higher chemical richness of this sponge than previously appreciated. This study highlights the importance of complementary technologies to uncover microbiome functions, reveals remarkable parallels between distantly related symbionts of the same host, and adds functional support for diverse chemically prolific lineages being present in microbial dark matter.

13.
Microbiome ; 9(1): 202, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34641955

ABSTRACT

BACKGROUND: Obtaining high-quality (HQ) reference genomes from microbial communities is crucial for understanding the phylogeny and function of uncultured microbes in complex microbial ecosystems. Despite improvements in bioinformatic approaches to generate curated metagenome-assembled genomes (MAGs), existing metagenome binners obtain population consensus genomes but they are nowhere comparable to genomes sequenced from isolates in terms of strain level resolution. Here, we present a framework for the integration of single-cell genomics and metagenomics, referred to as single-cell (sc) metagenomics, to reconstruct strain-resolved genomes from microbial communities at once. RESULTS: Our sc-metagenomics integration framework, termed SMAGLinker, uses single-cell amplified genomes (SAGs) generated using microfluidic technology as binning guides and integrates them with metagenome-assembled genomes (MAGs) to recover improved draft genomes. We compared sc-metagenomics with the metagenomics-alone approach using conventional metagenome binners. The sc-metagenomics approach showed precise contig binning and higher recovery rates (>97%) of rRNA and plasmids than conventional metagenomics in genome reconstruction from the cell mock community. In human microbiota samples, sc-metagenomics recovered the largest number of genomes with a total of 103 gut microbial genomes (21 HQ, with 65 showing >90% completeness) and 45 skin microbial genomes (10 HQ, with 40 showing >90% completeness), respectively. Conventional metagenomics recovered one Staphylococcus hominis genome, whereas sc-metagenomics recovered two S. hominis genomes from identical skin microbiota sample. Single-cell sequencing revealed that these S. hominis genomes were derived from two distinct strains harboring specifically different plasmids. We found that all conventional S. hominis MAGs had a substantial lack or excess of genome sequences and contamination from other Staphylococcus species (S. epidermidis). CONCLUSIONS: SMAGLinker enabled us to obtain strain-resolved genomes in the mock community and human microbiota samples by assigning metagenomic sequences correctly and covering both highly conserved genes such as rRNA genes and unique extrachromosomal elements, including plasmids. SMAGLinker will provide HQ genomes that are difficult to obtain using metagenomics alone and will facilitate the understanding of microbial ecosystems by elucidating detailed metabolic pathways and horizontal gene transfer networks. SMAGLinker is available at https://github.com/kojiari/smaglinker . Video abstract.


Subject(s)
Metagenomics , Microbiota , Genome, Microbial , Humans , Metagenome , Microbiota/genetics , Phylogeny
14.
Microbiol Resour Announc ; 9(46)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33184154

ABSTRACT

The genus Okeania is a globally distributed group of microorganisms that live in shallow seabed regions. These organisms play several environmentally important roles and are also known producers of several active secondary metabolites with potential human applications. Here, we present a draft genome of Okeania sp. strain KiyG1 (92.7% completeness) that was assembled from four single-amplified genomes.

15.
Microbiol Resour Announc ; 9(48)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33239461

ABSTRACT

Rickettsiales-like organisms are important for the survival and functioning of corals, prompting an investigation of their complete genomes. Earlier reports of the genomes of these organisms remain incomplete. Here, we report a novel draft genome of Rickettsiales bacterial strain SESOKO1, found in Acropora tenuis coral, using single-cell genome technology.

16.
Microbiome ; 8(1): 5, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31969191

ABSTRACT

BACKGROUND: The gut microbiota can have dramatic effects on host metabolism; however, current genomic strategies for uncultured bacteria have several limitations that hinder their ability to identify responders to metabolic changes in the microbiota. In this study, we describe a novel single-cell genomic sequencing technique that can identify metabolic responders at the species level without the need for reference genomes, and apply this method to identify bacterial responders to an inulin-based diet in the mouse gut microbiota. RESULTS: Inulin-feeding changed the mouse fecal microbiome composition to increase Bacteroides spp., resulting in the production of abundant succinate in the mouse intestine. Using our massively parallel single-cell genome sequencing technique, named SAG-gel platform, we obtained 346 single-amplified genomes (SAGs) from mouse gut microbes before and after dietary inulin supplementation. After quality control, the SAGs were classified as 267 bacteria, spanning 2 phyla, 4 classes, 7 orders, and 14 families, and 31 different strains of SAGs were graded as high- and medium-quality draft genomes. From these, we have successfully obtained the genomes of the dominant inulin-responders, Bacteroides spp., and identified their polysaccharide utilization loci and their specific metabolic pathways for succinate production. CONCLUSIONS: Our single-cell genomics approach generated a massive amount of SAGs, enabling a functional analysis of uncultured bacteria in the intestinal microbiome. This enabled us to estimate metabolic lineages involved in the bacterial fermentation of dietary fiber and metabolic outcomes such as short-chain fatty acid production in the intestinal environment based on the fibers ingested. The technique allows the in-depth isolation and characterization of uncultured bacteria with specific functions in the microbiota and could be exploited to improve human and animal health. Video abstract.


Subject(s)
Bacteria/classification , Dietary Fiber/metabolism , Gastrointestinal Microbiome , Genomics/methods , Inulin/metabolism , Single-Cell Analysis , Animals , Bacteria/metabolism , Dietary Fiber/administration & dosage , Feces/microbiology , Fermentation , Genome, Bacterial , Inulin/administration & dosage , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred BALB C , Prebiotics/analysis , Succinic Acid/metabolism
17.
Sci Rep ; 9(1): 10920, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358824

ABSTRACT

Since G-protein coupled receptors (GPCRs) are linked to various diseases, screening of functional ligands against GPCRs is vital for drug discovery. In the present study, we developed a high-throughput functional cell-based assay by combining human culture cells producing a GPCR, yeast cells secreting randomized peptide ligands, and a droplet microfluidic device. We constructed a reporter human cell line that emits fluorescence in response to the activation of human glucagon-like peptide-1 receptor (hGLP1R). We then constructed a yeast library secreting an agonist of hGLP1R or randomized peptide ligands. We demonstrated that high-throughput identification of functional ligands against hGLP1R could be performed by co-culturing the reporter cells and the yeast cells in droplets. We identified functional ligands, one of which had higher activity than that of an original sequence. The result suggests that our system could facilitate the discovery of functional peptide ligands of GPCRs.


Subject(s)
Drug Discovery , Glucagon-Like Peptide-1 Receptor/agonists , Peptides/pharmacology , Coculture Techniques , HEK293 Cells , High-Throughput Screening Assays , Humans , Ligands , Microfluidics , Saccharomyces cerevisiae/metabolism
18.
Sci Rep ; 8(1): 2059, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391438

ABSTRACT

Single-cell genomics is a straightforward approach to obtain genomes from uncultured microbes. However, sequence reads from a single-cell amplified genome (SAG) contain significant bias and chimeric sequences. Here, we describe Cleaning and Co-assembly of a Single-Cell Amplified Genome (ccSAG), a novel analytical workflow to obtain composite single-cell genomes with elimination of sequence errors. By the integration of ccSAG with a massively parallel single-cell genome amplification platform based on droplet microfluidics, we can generate multiple SAGs and effectively integrate them into the composite genomes quality equivalent to the data obtained from bulk DNA. We obtained two novel draft genomes from single gut microbial cells with high completeness (>96.6%) and extremely low contamination (<1.25%). Moreover, we revealed the presence of single nucleotide polymorphisms in the specific gene by sequence comparison at the single-cell level. Thus, the workflow yields near-complete genomes from uncultured microbes, and enables analyses of genetic heterogeneity within identical strains.


Subject(s)
Contig Mapping/methods , Gastrointestinal Microbiome , Genome, Bacterial , Single-Cell Analysis/methods , Whole Genome Sequencing/methods , Animals , Bacillus subtilis/genetics , Contig Mapping/standards , Escherichia coli/genetics , Male , Mice , Mice, Inbred ICR , Polymorphism, Single Nucleotide , Single-Cell Analysis/standards , Whole Genome Sequencing/standards
19.
Sci Rep ; 7(1): 5199, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28701744

ABSTRACT

Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.


Subject(s)
Bacteria/genetics , Genome, Bacterial , Genome, Human , Microfluidics/methods , Neoplasms/genetics , Single-Cell Analysis/methods , Whole Genome Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA , Soil/chemistry , Soil Microbiology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...