Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338815

MicroRNAs (miRNA) in extracellular vesicles and particles (EVPs) in maternal circulation during pregnancy and in human milk postpartum are hypothesized to facilitate maternal-offspring communication via epigenetic regulation. However, factors influencing maternal EVP miRNA profiles during these two critical developmental windows remain largely unknown. In a pilot study of 54 mother-child dyads in the New Hampshire Birth Cohort Study, we profiled 798 EVP miRNAs, using the NanoString nCounter platform, in paired maternal second-trimester plasma and mature (6-week) milk samples. In adjusted models, total EVP miRNA counts were lower for plasma samples collected in the afternoon compared with the morning (p = 0.024). Infant age at sample collection was inversely associated with total miRNA counts in human milk EVPs (p = 0.040). Milk EVP miRNA counts were also lower among participants who were multiparous after delivery (p = 0.047), had a pre-pregnancy BMI > 25 kg/m2 (p = 0.037), or delivered their baby via cesarean section (p = 0.021). In post hoc analyses, we also identified 22 specific EVP miRNA that were lower among participants who delivered their baby via cesarean section (Q < 0.05). Target genes of delivery mode-associated miRNAs were over-represented in pathways related to satiety signaling in infants (e.g., CCKR signaling) and mammary gland development and lactation (e.g., FGF signaling, EGF receptor signaling). In conclusion, we identified several key factors that may influence maternal EVP miRNA composition during two critical developmental windows, which should be considered in future studies investigating EVP miRNA roles in maternal and child health.


Extracellular Vesicles , MicroRNAs , Infant , Humans , Pregnancy , Female , MicroRNAs/metabolism , Milk, Human/metabolism , Cesarean Section , Cohort Studies , Epigenesis, Genetic , Pilot Projects , Postpartum Period , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism
2.
J Neurosci ; 37(12): 3331-3341, 2017 03 22.
Article En | MEDLINE | ID: mdl-28258169

Significant migration cues are required to guide and contain newly generated rodent subventricular zone (SVZ) neuroblasts as they transit along the lateral ventricles and then through the anterior forebrain to their ultimate site of differentiation in the olfactory bulbs (OBs). These cues enforce strict neuroblast spatial boundaries within the dense astroglial meshwork of the SVZ and rostral migratory stream (RMS), yet are permissive to large-scale neuroblast migration. Therefore, the molecular mechanisms that define these cues and control dynamic interactions between migratory neuroblasts and surrounding astrocytes are of particular interest. We found that deletion of EphA4 and specifically ablation of EphA4 kinase activity resulted in misaligned neuroblasts and disorganized astrocytes in the RMS/SVZ, linking EphA4 forward signaling to SVZ and RMS spatial organization, orientation, and regulation. In addition, within a 3 week period, there was a significant reduction in the number of neuroblasts that reached the OB and integrated into the periglomerular layer, revealing a crucial role for EphA4 in facilitating efficient neuroblast migration to the OB. Single-cell analysis revealed that EPHA4 and its EFN binding partners are expressed by subpopulations of neuroblasts and astrocytes within the SVZ/RMS/OB system resulting in a cell-specific mosaic, suggesting complex EphA4 signaling involving both homotypic and heterotypic cell-cell interactions. Together, our studies reveal a novel molecular mechanism involving EphA4 signaling that functions in stem cell niche organization and ultimately neuroblast migration in the anterior forebrain.SIGNIFICANCE STATEMENT The subventricular zone neurogenic stem cell niche generates highly migratory neuroblasts that transit the anterior forebrain along a defined pathway to the olfactory bulb. Postnatal and adult brain organization dictates strict adherence to a narrow migration corridor. Subventricular zone neuroblasts are aligned in tightly bundled chains within a meshwork of astrocytes; however, the cell-cell cues that organize this unique, cell-dense migration pathway are largely unknown. Our studies show that forward signaling through the EphA4 tyrosine kinase receptor, mediated by ephrins expressed by subpopulations of neuroblasts and astrocytes, is required for compact, directional organization of neuroblasts and astrocytes within the pathway and efficient transit of neuroblasts through the anterior forebrain to the olfactory bulb.


Astrocytes/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Prosencephalon/physiology , Receptor, EphA4/metabolism , Stem Cell Niche/physiology , Animals , Astrocytes/cytology , Cell Communication/physiology , Cell Movement/physiology , Cells, Cultured , Gene Expression Regulation, Developmental/physiology , Male , Mice , Mice, Knockout , Neural Stem Cells/cytology , Prosencephalon/cytology
3.
PLoS One ; 9(4): e95304, 2014.
Article En | MEDLINE | ID: mdl-24743916

Despite years of research, the reprogramming of human somatic cells to pluripotency remains a slow, inefficient process, and a detailed mechanistic understanding of reprogramming remains elusive. Current models suggest reprogramming to pluripotency occurs in two-phases: a prolonged stochastic phase followed by a rapid deterministic phase. In this paradigm, the early stochastic phase is marked by the random and gradual expression of pluripotency genes and is thought to be a major rate-limiting step in the successful generation of induced Pluripotent Stem Cells (iPSCs). Recent evidence suggests that the epigenetic landscape of the somatic cell is gradually reset during a period known as the stochastic phase, but it is known neither how this occurs nor what rate-limiting steps control progress through the stochastic phase. A precise understanding of gene expression dynamics in the stochastic phase is required in order to answer these questions. Moreover, a precise model of this complex process will enable the measurement and mechanistic dissection of treatments that enhance the rate or efficiency of reprogramming to pluripotency. Here we use single-cell transcript profiling, FACS and mathematical modeling to show that the stochastic phase is an ordered probabilistic process with independent gene-specific dynamics. We also show that partially reprogrammed cells infected with OSKM follow two trajectories: a productive trajectory toward increasingly ESC-like expression profiles or an alternative trajectory leading away from both the fibroblast and ESC state. These two pathways are distinguished by the coordinated expression of a small group of chromatin modifiers in the productive trajectory, supporting the notion that chromatin remodeling is essential for successful reprogramming. These are the first results to show that the stochastic phase of reprogramming in human fibroblasts is an ordered, probabilistic process with gene-specific dynamics and to provide a precise mathematical framework describing the dynamics of pluripotency gene expression during reprogramming by OSKM.


Cellular Reprogramming/physiology , Induced Pluripotent Stem Cells/cytology , Single-Cell Analysis/methods , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism
4.
Biochemistry ; 53(2): 300-10, 2014 Jan 21.
Article En | MEDLINE | ID: mdl-24377660

In type 2 diabetics, the hormone amylin misfolds into amyloid plaques implicated in the destruction of the pancreatic ß-cells that make insulin and amylin. The aggregative misfolding of amylin is pH-dependent, and exposure of the hormone to acidic and basic environments could be physiologically important. Amylin has two ionizable residues between pH 3 and 9: the α-amino group and His18. Our approach to measuring the pKa values for these sites has been to look at the pH dependence of fibrillization in amylin variants that have only one of the two groups. The α-amino group at the unstructured N-terminus of amylin has a pKa near 8.0, similar to the value in random coil models. By contrast, His18, which is involved in the intermolecular ß-sheet structure of the fibrils, has a pKa that is lowered to 5.0 in the fibrils compared to the random coil value of 6.5. The lowered pKa of His18 is due to the hydrophobic environment of the residue, and electrostatic repulsion between positively charged His18 residues on neighboring amylin molecules in the fibril. His18 acts as an electrostatic switch inhibiting fibrillization in its charged state. The presence of a charged side chain at position 18 also affects fibril morphology and lowers amylin cytotoxicity toward a MIN6 mouse model of pancreatic ß-cells. In addition to the two expected pKa values, we detected an apparent pKa of ~4.0 for the amylin-derived peptide NAc-SNNFGAILSS-NH2, which has no titratable groups. This pKa is due to the pH-induced ionization of the dye thioflavin T. By using alternative methods to follow fibrillization such as the dye Nile Red or turbidimetry, we were able to distinguish between the titration of the dye and groups on the peptide. Large differences in reaction kinetics were observed between the different methods at acidic pH, because of charges on the ThT dye, which hinder fibril formation much like the charges on the protein.


Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Animals , Benzothiazoles , Cell Survival/drug effects , Fluorescent Dyes/chemistry , Humans , Hydrogen-Ion Concentration , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/pharmacology , Kinetics , Mice , Models, Animal , Models, Molecular , Molecular Structure , Protein Binding/drug effects , Structure-Activity Relationship , Thiazoles/chemistry , Tumor Cells, Cultured
5.
Blood ; 120(10): 2109-17, 2012 Sep 06.
Article En | MEDLINE | ID: mdl-22855611

The Fanconi anemia (FA)-BRCA pathway is critical for the repair of DNA interstrand crosslinks (ICLs) and the maintenance of chromosome stability. A key step in FA-BRCA pathway activation is the covalent attachment of monoubiquitin to FANCD2 and FANCI. Monoubiquitinated FANCD2 and FANCI localize in chromatin-associated nuclear foci where they interact with several well-characterized DNA repair proteins. Importantly, very little is known about the structure, function, and regulation of FANCD2. Herein, we describe the identification and characterization of a CUE (coupling of ubiquitin conjugation to endoplasmic reticulum degradation) ubiquitin-binding domain (UBD) in FANCD2, and demonstrate that the CUE domain mediates noncovalent binding to ubiquitin in vitro. We show that although mutation of the CUE domain destabilizes FANCD2, the protein remains competent for DNA damage-inducible monoubiquitination and phosphorylation. Importantly, we demonstrate that the CUE domain is required for interaction with FANCI, retention of monoubiquitinated FANCD2, and FANCI in chromatin, and for efficient ICL repair. Our results suggest a model by which heterodimerization of monoubiquitinated FANCD2 and FANCI in chromatin is mediated in part through a noncovalent interaction between the FANCD2 CUE domain and monoubiquitin covalently attached to FANCI, and that this interaction shields monoubiquitinated FANCD2 from polyubiquitination and proteasomal degradation.


DNA Repair/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Signal Transduction/genetics , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Chromatin/genetics , Chromosomal Instability , DNA Damage , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , HeLa Cells , Humans , Molecular Sequence Data , Mutation , Phosphorylation , Plasmids , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Transfection , Ubiquitination
6.
Nucleic Acids Res ; 39(Database issue): D525-33, 2011 Jan.
Article En | MEDLINE | ID: mdl-20972216

Stem cell biology has experienced explosive growth over the past decade as researchers attempt to generate therapeutically relevant cell types in the laboratory. Recapitulation of endogenous developmental trajectories is a dominant paradigm in the design of directed differentiation protocols, and attempts to guide stem cell differentiation are often based explicitly on knowledge of in vivo development. Therefore, when designing protocols, stem cell biologists rely heavily upon information including (i) cell type-specific gene expression profiles, (ii) anatomical and developmental relationships between cells and tissues and (iii) signals important for progression from progenitors to target cell types. Here, we present the Stem Cell Lineage Database (SCLD) (http://scld.mcb.uconn.edu) that aims to unify this information into a single resource where users can easily store and access information about cell type gene expression, cell lineage maps and stem cell differentiation protocols for both human and mouse stem cells and endogenous developmental lineages. By establishing the SCLD, we provide scientists with a centralized location to organize access and share data, dispute and resolve contentious relationships between cell types and within lineages, uncover discriminating cell type marker panels and design directed differentiation protocols.


Cell Lineage , Databases, Factual , Stem Cells/cytology , Animals , Cell Differentiation , Gene Expression , Humans , Mesoderm/cytology , Mesoderm/growth & development , Mice , Stem Cells/metabolism
7.
J Biol Chem ; 284(42): 28935-42, 2009 Oct 16.
Article En | MEDLINE | ID: mdl-19704162

Fanconi Anemia (FA) is a rare recessive disease characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The FA proteins and the familial breast cancer susceptibility gene products, BRCA1 and FANCD1/BRCA2, function cooperatively in the FA-BRCA pathway to repair damaged DNA and to prevent cellular transformation. Activation of this pathway occurs via the mono-ubiquitination of the FANCD2 protein, targeting it to nuclear foci where it co-localizes with FANCD1/BRCA2, RAD51, and PCNA. The regulation of the mono-ubiquitination of FANCD2, as well as its function in DNA repair remain poorly understood. In this study, we have further characterized the interaction between the FANCD2 and PCNA proteins. We have identified a highly conserved, putative FANCD2 PCNA interaction motif (PIP-box), and demonstrate that mutation of this motif disrupts FANCD2-PCNA binding and precludes the mono-ubiquitination of FANCD2. Consequently, the FANCD2 PIP-box mutant protein fails to correct the mitomycin C hypersensitivity of FA-D2 patient cells. Our results suggest that PCNA may function as a molecular platform to facilitate the mono-ubiquitination of FANCD2 and activation of the FA-BRCA pathway.


Fanconi Anemia Complementation Group D2 Protein/physiology , Proliferating Cell Nuclear Antigen/metabolism , Animals , Apoptosis Regulatory Proteins , BRCA2 Protein/metabolism , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , DNA Damage , DNA Repair , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Humans , Mitomycin/chemistry , Mutagenesis, Site-Directed , Mutation , Ubiquitin/chemistry
8.
Mutat Res ; 668(1-2): 27-41, 2009 Jul 31.
Article En | MEDLINE | ID: mdl-19101576

It has long been hypothesized that a defect in the repair of damaged DNA is central to the etiology of Fanconi anemia (FA). Indeed, an increased sensitivity of FA patient-derived cells to the lethal effects of various forms of DNA damaging agents was described over three decades ago [A.J. Fornace, Jr., J.B. Little, R.R. Weichselbaum, DNA repair in a Fanconi's anemia fibroblast cell strain, Biochim. Biophys. Acta 561 (1979) 99-109; Y. Fujiwara, M. Tatsumi, Repair of mitomycin C damage to DNA in mammalian cells and its impairment in Fanconi's anemia cells, Biochem. Biophys. Res. Commun. 66 (1975) 592-598; A.J. Rainbow, M. Howes, Defective repair of ultraviolet- and gamma-ray-damaged DNA in Fanconi's anaemia, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 31 (1977) 191-195]. Furthermore, the cytological hallmark of FA, the DNA crosslink-induced radial chromosome formation, exemplifies an innate impairment in the repair of these particularly cytotoxic DNA lesions [A.D. Auerbach, Fanconi anemia diagnosis and the diepoxybutane (DEB) test, Exp. Hematol. 21 (1993) 731-733]. Precisely defining the collective role of the FA proteins in DNA repair, however, continues to be one of the most enigmatic and challenging questions in the FA field. The first six identified FA proteins (A, C, E, F, G, and D2) harbored no recognizable enzymatic features, precluding association with a specific metabolic process. Consequently, our knowledge of the role of the FA proteins in the DNA damage response has been gleaned primarily through biochemical association studies with non-FA proteins. Here, we provide a chronological discourse of the major FA protein interaction network discoveries, with particular emphasis on the DNA damage response, that have defined our current understanding of the molecular basis of FA.


Fanconi Anemia Complementation Group Proteins/physiology , Fanconi Anemia/genetics , Chromosomal Instability , DNA/metabolism , DNA Repair , Epistasis, Genetic , Fanconi Anemia Complementation Group Proteins/genetics , Humans , Models, Biological , Recombination, Genetic
...