Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 490
1.
J Infect Dis ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38723107

BACKGROUND: Influenza virus remains a threat to human health, but gaps remain in our knowledge of the humoral correlates of protection against influenza virus A/H3N2, limiting our ability to generate effective, broadly protective vaccines. The role of antibodies against the hemagglutinin (HA) stalk, a highly conserved but immunologically sub-dominant region, has not been established for influenza virus A/H3N2. METHODS: Household transmission studies were conducted in Managua, Nicaragua across three influenza seasons. Household contacts were tested for influenza virus infection using RT-PCR. We compared pre-existing antibody levels against full-length hemagglutinin (FLHA), HA stalk, and neuraminidase (NA) measured by enzyme-linked immunosorbent assay (ELISA), along with HA inhibition assay (HAI) titers, between infected and uninfected participants. RESULTS: A total of 899 individuals participated in household activation, with 329 infections occurring. A four-fold increase in initial HA stalk titers was independently associated with an 18% decrease in the risk of infection (OR=0.82, 95%CI 0.68-0.98, p=0.04). In adults, anti-HA stalk antibodies were independently associated with protection (OR=0.72, 95%CI 0.54-0.95, p=0.02). However, in 0-14-year-olds, anti-NA antibodies (OR=0.67, 95%CI 0.53-0.85, p<0.01) were associated with protection against infection, but anti-HA stalk antibodies were not. CONCLUSIONS: The HA stalk is an independent correlate of protection against A/H3N2 infection, though this association is age dependent. Our results support the continued exploration of the HA stalk as a target for broadly protective influenza vaccines but suggest that the relative benefits may depend on age and influenza virus exposure history.

2.
J Infect Dis ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38743692

BACKGROUND: Several influenza vaccine candidates aim to elicit antibodies against the conserved hemagglutinin stalk domain. Understanding the protective mechanism of these antibodies, which mediate broad neutralization and Fc-mediated functions, following seasonal vaccination is critical. METHODS: Plasma samples were obtained from a subset of pregnant women living with or without HIV-1 enrolled in a randomised trial (138 trivalent inactivated vaccine [TIV] and 145 placebo recipients). Twenty-three influenza-illness cases were confirmed within 6 months postpartum. We measured H1 stalk-specific antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and cellular cytotoxicity (ADCC) at enrolment and 1-month post-vaccination. The association between these Fc-mediated functions and protection against influenza-illness following vaccination was examined using multiple logistic regression analysis and risk reduction thresholds were defined by the score associated with the lowest odds of influenza-illness. RESULTS: Amongst TIV and placebo recipients, lower H1 stalk-specific ADCP and ADCD activity was detected for participants with confirmed influenza compared with individuals without confirmed influenza-illness 1-month post-vaccination. Pre-existing ADCP scores ≥250 reduced the odds of A/H1N1 infection (odds ratio 0.11; p=0.01) with an 83% likelihood of risk reduction. Following TIV, ADCD scores of ≥25 and ≥15 significantly reduced the odds against A/H1N1 (0.10; p=0.01) and non-group 1 (0.06; p=0.0004) influenza virus infections, respectively. These ADCD scores were associated with >84% likelihood of risk reduction. H1 stalk-specific ADCC potential was not associated with protection against influenza-illness. CONCLUSION: H1 stalk-specific ADCD correlates with protection against influenza-illness following influenza vaccination during pregnancy. These findings provide insight into the protective mechanisms of HA stalk antibodies.

3.
EBioMedicine ; 104: 105153, 2024 May 27.
Article En | MEDLINE | ID: mdl-38805853

BACKGROUND: The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS: We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS: Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION: Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING: This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).

4.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690733

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , COVID-19/blood , Male , Longitudinal Studies , SARS-CoV-2/immunology , Female , Middle Aged , Aged , Adult , Cytokines/blood , Cytokines/immunology , Multiomics
5.
J Virol ; : e0062624, 2024 May 15.
Article En | MEDLINE | ID: mdl-38747601

Highly pathogenic avian influenza viruses of the H5N1 clade 2.3.4.4b were detected in North America in the winter of 2021/2022. These viruses have spread across the Americas, causing morbidity and mortality in both wild and domestic birds as well as some mammalian species, including cattle. Many surveillance programs for wildlife as well as commercial poultry operations have detected these viruses. In this study, we conducted surveillance of avian species in the urban environment in New York City. We detected highly pathogenic H5N1 viruses in six samples from four different bird species and performed whole-genome sequencing. Sequencing analysis showed the presence of multiple different genotypes. Our work highlights that the interface between animals and humans that may give rise to zoonotic infections or even pandemics is not limited to rural environments and commercial poultry operations but extends into the heart of our urban centers.IMPORTANCEWhile surveillance programs for avian influenza viruses are often focused on migratory routes and their associated stop-over locations or commercial poultry operations, many bird species-including migratory birds-frequent or live in urban green spaces and wetlands. This brings them into contact with a highly dense population of humans and pets, providing an extensive urban animal-human interface in which the general public may have little awareness of circulating infectious diseases. This study focuses on virus surveillance of this interface, combined with culturally responsive science education and community outreach.

6.
Sci Transl Med ; 16(747): eadl1722, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748773

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Neutralization Tests , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/blood , COVID-19/virology , Mice , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cricetinae , Antibodies, Viral/blood , Antibodies, Viral/immunology , Disease Models, Animal
7.
PLoS One ; 19(4): e0292566, 2024.
Article En | MEDLINE | ID: mdl-38564600

Post vaccine immunity following COVID-19 mRNA vaccination may be driven by extrinsic, or controllable and intrinsic, or inherent health factors. Thus, we investigated the effects of extrinsic and intrinsic on the peak antibody response following COVID-19 primary vaccination and on the trajectory of peak antibody magnitude and durability over time. Participants in a longitudinal cohort attended visits every 3 months for up to 2 years following enrollment. At baseline, participants provided information on their demographics, recreational behaviors, and comorbid health conditions which guided our model selection process. Blood samples were collected for serum processing and spike antibody testing at each visit. Cross-sectional and longitudinal models (linear-mixed effects models) were generated to assess the relationship between selected intrinsic and extrinsic health factors on peak antibody following vaccination and to determine the influence of these predictors on antibody over time. Following cross-sectional analysis, we observed higher peak antibody titers after primary vaccination in females, those who reported recreational drug use, younger age, and prior COVID-19 history. Following booster vaccination, females and Hispanics had higher peak titers after the 3rd and 4th doses, respectively. Longitudinal models demonstrated that Moderna mRNA-1273 recipients, females, and those previously vaccinated had increased peak titers over time. Moreover, drug users and half-dose Moderna mRNA-1273 recipients had higher peak antibody titers over time following the first booster, while no predictive factors significantly affected post-second booster antibody responses. Overall, both intrinsic and extrinsic health factors play a significant role in shaping humoral immunogenicity after initial vaccination and the first booster. The absence of predictive factors for second booster immunogenicity suggests a more robust and consistent immune response after the second booster vaccine administration.


COVID-19 , SARS-CoV-2 , Female , Humans , Antibody Formation , COVID-19/prevention & control , 2019-nCoV Vaccine mRNA-1273 , Cross-Sectional Studies , Antibodies , Vaccination , Antibodies, Viral
8.
Curr Protoc ; 4(4): e1024, 2024 Apr.
Article En | MEDLINE | ID: mdl-38578049

The primary mode of transmission for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is infection of the respiratory tract through droplets and/or aerosols. Therefore, immune responses at respiratory mucosal surfaces play a significant role in the prevention of infection. Greater emphasis is now being placed on mucosal immunity induced by exposure to SARS-CoV-2 antigens through infection or vaccination. In concert with cellular immunity, humoral responses at mucosal surfaces, especially the secretory version of immunoglobulin A (sIgA), can be instrumental in preventing respiratory infections. A better understanding of mucosal immune responses can further our knowledge of immunity to SARS-CoV-2 and help inform vaccine design. Here we describe a detailed protocol for an in vitro assay based on the enzyme-linked immunosorbent assay (ELISA) to assess mucosal antibody response to SARS-CoV-2 spike protein in human saliva. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: ELISA measurement of mucosal antibodies to SARS-CoV-2 spike protein in human saliva.


COVID-19 , Spike Glycoprotein, Coronavirus , Viral Vaccines , Humans , SARS-CoV-2 , Antibodies, Viral , Saliva , Antibody Formation , Enzyme-Linked Immunosorbent Assay
9.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664395

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Chiroptera , Ferrets , Influenza A Virus, H9N2 Subtype , Orthomyxoviridae Infections , Virus Replication , Animals , Ferrets/virology , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/physiology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/isolation & purification , Chiroptera/virology , Humans , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Mice , Phylogeny , Influenza, Human/transmission , Influenza, Human/virology , Lung/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood
10.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630846

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


COVID-19 , Humans , Aged , Adolescent , Young Adult , Adult , Middle Aged , Aged, 80 and over , SARS-CoV-2 , Prospective Studies , Multiomics , Chemokines
11.
bioRxiv ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38617218

Highly pathogenic avian influenza viruses of the H5N1 clade 2.3.4.4b arrived in North America in the winter of 2021/2022. These viruses have spread across the Americas causing morbidity and mortality in both wild and domestic birds as well as some mammalian species, including cattle. Many surveillance programs in wildlife as well as commercial poultry operations have detected these viruses. Here we conducted surveillance of avian species in the urban environment in New York City. We detected highly pathogenic H5N1 viruses in six samples from four different bird species and performed full genome sequencing. Sequence analysis showed the presence of multiple different genotypes. Our work highlights that the interface between animals and humans that may give rise to zoonotic infections or even pandemics is not limited to rural environments and commercial poultry operations but extends into the heart of our urban centers.

12.
Vaccine ; 42(14): 3365-3373, 2024 May 22.
Article En | MEDLINE | ID: mdl-38627145

The head domain of the hemagglutinin of influenza viruses plays a dominant role in the antibody response due to the presence of immunodominant antigenic sites that are the main targets of host neutralizing antibodies. For the H1 hemagglutinin, five major antigenic sites defined as Sa, Sb, Ca1, Ca2, and Cb have been described. Although previous studies have focused on defining the hierarchy of the antigenic sites of the hemagglutinin in different human cohorts, it is still unclear if the immunodominance profile of the antigenic sites might change with the antibody levels of individuals or if other demographic factors (such as exposure history, sex, or age) could also influence the importance of the antigenic sites. The major antigenic sites of influenza viruses hemagglutinins are responsible for eliciting most of the hemagglutination inhibition antibodies in the host. To determine the antibody prevalence towards each major antigenic site, we evaluated the hemagglutination inhibition against a panel of mutant H1 viruses, each one lacking one of the "classic" antigenic sites. Our results showed that the individuals from the Stop Flu NYU cohort had an immunodominant response towards the sites Sb and Ca2 of H1 hemagglutinin. A simple logistic regression analysis of the immunodominance profiles and the hemagglutination inhibition titers displayed by each donor revealed that individuals with high hemagglutination inhibition titers against the wild-type influenza virus exhibited higher probabilities of displaying an immunodominance profile dominated by Sb, followed by Ca2 (Sb > Ca2 profile), while individuals with low hemagglutination inhibition titers presented a higher chance of displaying an immunodominance profile in which Sb and Ca2 presented the same level of immunodominance (Sb = Ca2 profile). Finally, while age exhibited an influence on the immunodominance of the antigenic sites, biological sex was not related to displaying a specific immunodominance profile.


Antibodies, Viral , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus , Immunodominant Epitopes , Influenza, Human , Humans , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , Male , Adult , Immunodominant Epitopes/immunology , Middle Aged , Influenza, Human/immunology , Influenza, Human/prevention & control , Young Adult , Age Factors , Sex Factors , Adolescent , Cohort Studies , Aged , Antigens, Viral/immunology , Influenza A Virus, H1N1 Subtype/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
13.
Crit Care Explor ; 6(2): e1046, 2024 Feb.
Article En | MEDLINE | ID: mdl-38511127

OBJECTIVES: Secondary hemophagocytic lymphohistiocytosis (sHLH) is a cytokine-driven inflammatory syndrome that is associated with substantial morbidity and mortality and frequently leads to ICU admission. Overall survival in adults with sHLH remains poor, especially in those requiring intensive care. Classical chemotherapeutic treatment exhibits myelosuppression and toxicity. Recently, inhibition of Janus kinase signaling by ruxolitinib has shown efficacy in pediatric HLH. We therefore aimed to determine the activity and safety of a ruxolitinib-based regimen, in critically ill adults with sHLH. DESIGN: Observational pilot study. SETTING: Single-center tertiary academic ICU. PATIENTS: Nine adults (≥ 18 yr) who fulfilled at least five of the eight HLH-2004 criteria. INTERVENTION: Triplet regimen combining: 1) ruxolitinib, 2) polyvalent human IV immunoglobulins (IVIG) at a dose of 1 g/kg bodyweight for 5 days, and 3) high-dose corticosteroids (CSs, dexamethasone 10 mg/m² body surface area, or methylprednisolone equivalent) with subsequent tapering according to the HLH-2004 protocol. MEASUREMENT AND MAIN RESULTS: Nine patients (median age: 42 yr [25th-75th percentile: 32-54]; male: n = 6 males, median H-score: 299 [255-304]) were treated with the triplet regimen. The median Sequential Organ Failure Assessment score at HLH diagnosis was 9 (median; 25th-75th percentile: 7-12), indicating multiple-organ dysfunction in all patients. Within 10 days a significant decrease of the inflammatory parameters soluble interleukin-2 receptor and ferritin as well as a stabilization of the blood count could be shown. All patients were alive at ICU discharge (100% ICU survival), 1 patient died after ICU discharge because of traumatic intracerebral hemorrhage that might be related to HLH or treatment, corresponding to an overall survival of 86% in a 6 months follow-up period. CONCLUSION: In this small case series, a triplet regimen of ruxolitinib in combination with IVIG and CS was highly effective and save for treating critically ill adults with sHLH.

14.
bioRxiv ; 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38464151

Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.

15.
J Reprod Immunol ; 163: 104243, 2024 Jun.
Article En | MEDLINE | ID: mdl-38522364

Associations between antenatal SARS-CoV-2 infection and pregnancy outcomes have been conflicting and the role of the immune system is currently unclear. This prospective cohort study investigated the interaction of antenatal SARS-CoV-2 infection, changes in cytokine and HS-CRP levels, birthweight and gestational age at birth. 2352 pregnant participants from New York City (2020-2022) were included. Plasma levels of interleukin (IL)-1ß, IL-6, IL-17A and high-sensitivity C-reactive protein (HS-CRP) were quantified in blood specimens obtained across pregnancy. Quantile and linear regression models were conducted to 1) assess the impact of antenatal SARS-CoV-2 infection, overall and by timing of detection of SARS-CoV-2 positivity (< 20 weeks versus ≥ 20 weeks), on birthweight and gestational age at delivery; 2) examine the relationship between SARS-CoV-2 infection and maternal immune changes during pregnancy. All models were adjusted for maternal demographic and obstetric factors and pandemic timing. Birthweight models were additionally adjusted for gestational age at delivery and fetal sex. Immune marker models were also adjusted for gestational age at specimen collection and multiplex assay batch. 371 (15.8%) participants were infected with SARS-CoV-2 during pregnancy, of which 98 (26.4%) were infected at < 20 weeks gestation. Neither SARS-CoV-2 infection in general nor in early or late pregnancy was associated with lower birthweight nor earlier gestational age at delivery. Further, we did not observe cytokine or HS-CRP changes in response to SARS-CoV-2 infection and thus found no evidence to support a potential association between immune dysregulation and the diversity in pregnancy outcomes following infection.


Birth Weight , COVID-19 , Inflammation , Pregnancy Complications, Infectious , Pregnancy Outcome , SARS-CoV-2 , Humans , Pregnancy , Female , COVID-19/immunology , COVID-19/blood , Adult , Prospective Studies , New York City/epidemiology , SARS-CoV-2/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology , Inflammation/immunology , Inflammation/blood , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Gestational Age , Infant, Newborn , Cytokines/blood
16.
Cell Rep Med ; 5(3): 101474, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38508136

Subvariants of the Omicron lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) efficiently escape neutralizing antibody responses induced by both vaccination and infection with antigenically distinct variants. Here, we describe the potency and breadth of neutralizing and binding antibody responses against a large panel of variants following an Omicron BA.1 or BA.2 breakthrough infection in a heterogeneous cohort of individuals with diverse exposure histories. Both BA.1 and BA.2 breakthrough infections significantly boost antibody levels and broaden antibody reactivity. However, this broader immunity induced by BA.1 and BA.2 breakthrough infections does not neutralize Omicron BQ and XBB subvariants efficiently. While these subvariants are not neutralized well by post-breakthrough sera, suggesting escape, binding non-neutralizing antibody responses are sustained. In summary, our data suggest that while BA.1 and BA.2 breakthrough infections broaden the immune response to SARS-CoV-2 spike, the induced neutralizing antibody response is still outpaced by viral evolution.


Antibody Formation , COVID-19 , Humans , Breakthrough Infections , SARS-CoV-2 , Antibodies, Neutralizing
18.
Immunity ; 57(3): 587-599.e4, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38395697

It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.


COVID-19 , Vaccines , Humans , SARS-CoV-2 , Antibody Formation , Vaccination , Immunization, Secondary , mRNA Vaccines , Antibodies, Viral
19.
medRxiv ; 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38405760

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-γ, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.

...