Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Transl Med ; 4(159): 159ra148, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23136043

ABSTRACT

Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca(2+) influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.


Subject(s)
Heart Failure/complications , Membrane Transport Modulators/administration & dosage , Membrane Transport Modulators/therapeutic use , Pulmonary Edema/drug therapy , Pulmonary Edema/prevention & control , TRPV Cation Channels/antagonists & inhibitors , Administration, Oral , Animals , Blood Pressure/drug effects , Calcium/metabolism , Disease Models, Animal , Diuretics/pharmacology , Endothelium/drug effects , Endothelium/metabolism , Endothelium/pathology , Heart Failure/pathology , Heart Failure/physiopathology , Heart Rate/drug effects , Humans , In Vitro Techniques , Ion Channel Gating/drug effects , Lung/drug effects , Lung/metabolism , Lung/pathology , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/pharmacology , Mice , Mice, Knockout , Permeability/drug effects , Protein Transport/drug effects , Pulmonary Edema/etiology , Pulmonary Edema/pathology , Rats , TRPV Cation Channels/metabolism , Water-Electrolyte Balance/drug effects
2.
Bioorg Med Chem Lett ; 19(19): 5617-21, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19717304

ABSTRACT

The liver X receptors (LXR) play a key role in cholesterol homeostasis and lipid metabolism. SAR studies around tertiary-amine lead molecule 2, an LXR full agonist, revealed that steric and conformational changes to the acetic acid and propanolamine groups produce dramatic effects on agonist efficacy and potency. The new analogs possess good functional activity, demonstrating the ability to upregulate LXR target genes, as well as promote cholesterol efflux in macrophages.


Subject(s)
Amines/chemistry , Cholesterol/metabolism , Macrophages/drug effects , Orphan Nuclear Receptors/agonists , Amines/chemical synthesis , Amines/pharmacokinetics , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Humans , Liver X Receptors , Macrophages/immunology , Mice , Mice, Knockout , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 19(1): 27-30, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19058966

ABSTRACT

Endothelial lipase (EL) activity has been implicated in HDL catabolism, vascular inflammation, and atherogenesis, and inhibitors are therefore expected to be useful for the treatment of cardiovascular disease. Sulfonylfuran urea 1 was identified in a high-throughput screening campaign as a potent and non-selective EL inhibitor. A lead optimization effort was undertaken to improve potency and selectivity, and modifications leading to improved LPL selectivity were identified. Radiolabeling studies were undertaken to establish the mechanism of action for these inhibitors, which were ultimately demonstrated to be irreversible inhibitors.


Subject(s)
Furans , Lipase/antagonists & inhibitors , Sulfonylurea Compounds/chemical synthesis , Animals , Cardiovascular Diseases/drug therapy , Drug Discovery , Drug Evaluation, Preclinical , Endothelium/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Sulfonylurea Compounds/pharmacology
4.
J Biomol Screen ; 13(6): 468-75, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18566479

ABSTRACT

Endothelial lipase (EL) is a 482-amino-acid protein from the triglyceride lipase gene family that uses a Ser-His-Asp triad for catalysis. Its expression in endothelial cells and preference for phospholipids rather than triglycerides are unique. Animal models in which it is overexpressed or knocked out indicate EL levels are inversely correlated with high-density lipoprotein cholesterol (HDL-C). HDL-C is commonly referred to as the good form of cholesterol because it is involved in the reverse cholesterol transport pathway, in which excess cholesterol is effluxed from peripheral tissues for excretion or reabsorption. Thus, EL inhibition in humans is expected to lead to increases in HDL levels and possibly a decrease in cardiovascular disease. To discover inhibitors of EL, a coupled assay for EL has been developed, using its native substrate, HDL. Hydrolysis of HDL by EL yields free fatty acids, which are coupled through acyl-CoA synthetase, acyl-CoA oxidase, and horseradish peroxidase to produce the fluorescent species resorufin. This assay was developed into a 5-microL, 1536-well assay format, and a high-throughput screen was executed against the GSK collection. In addition to describing the screening results, novel post-HTS mechanism-of-action studies were developed for EL and applied to 1 of the screening hits as an example.


Subject(s)
Lipase/metabolism , Lipoproteins, HDL/metabolism , Acyl-CoA Oxidase/metabolism , Adenosine Triphosphate/metabolism , Animals , Biological Assay , CHO Cells , Coenzyme A Ligases/metabolism , Cricetinae , Cricetulus , Fatty Acids, Nonesterified/metabolism , Horseradish Peroxidase/metabolism , Humans , Hydrolysis , Kinetics , Lipase/chemistry , Lipase/genetics , Lipase/isolation & purification , Models, Biological , Oxazines/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity
5.
Eur J Pharmacol ; 536(3): 232-40, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16603153

ABSTRACT

The purpose of this study was to determine whether poloxamer 407, a chemical known to increase plasma lipid levels in rodents following parenteral administration, decreased the gene expression of ATP-binding-cassette transporter A1. Using human macrophages cultured with poloxamer 407, there was a significant reduction in the gene expression of ATP-binding-cassette transporter A1; however, there was no effect on the gene expression of either fatty acid synthase or sterol regulatory element binding protein-1. Reduction of ATP-binding-cassette transporter A1 mRNA levels was also observed in both liver and intestine of poloxamer 407-treated rats. When macrophages were cultured with poloxamer 407, the percent of cholesterol effluxed decreased in a concentration-dependent fashion, both in the absence and presence of a synthetic liver X receptor agonist. Lastly, total and unesterified (free) cholesterol concentrations were determined in the liver and 9 peripheral tissues of poloxamer 407- and saline-injected (control) rats. In every tissue, the concentration of total cholesterol for poloxamer 407-treated rats was significantly greater than the corresponding value for controls. Our findings would seem to suggest that the poloxamer 407-mediated reduction in both ATP-binding-cassette transporter A1 gene expression and cellular cholesterol efflux may potentially be one factor that contributes to the accumulation of cholesterol and cholesteryl esters in the liver and 9 peripheral tissues of poloxamer 407-treated rats. Furthermore, the surprising specificity by poloxamer 407 for inhibition of ATP-binding-cassette transporter A1 gene expression over fatty acid synthase and sterol regulatory element binding protein-1 may potentially be due to either disruption of a transcriptional cofactor required for ATP-binding-cassette transporter A1 gene expression, or enhanced turnover of ATP-binding-cassette transporter A1 mRNA.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cholesterol/metabolism , Gene Expression/drug effects , Poloxamer/pharmacology , ATP Binding Cassette Transporter 1 , Animals , Cells, Cultured , Cholesterol/blood , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/genetics , Fatty Acid Synthases/genetics , Humans , Intestinal Mucosa/metabolism , Intestines/drug effects , Lipids/analysis , Lipids/blood , Liver/drug effects , Liver/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sterol Regulatory Element Binding Protein 1/genetics , Surface-Active Agents/pharmacology
6.
J Med Chem ; 48(17): 5419-22, 2005 Aug 25.
Article in English | MEDLINE | ID: mdl-16107141

ABSTRACT

Substituted 3-(phenylamino)-1H-pyrrole-2,5-diones were identified from a high throughput screen as inducers of human ATP binding cassette transporter A1 expression. Mechanism of action studies led to the identification of GSK3987 as an LXR ligand. GSK3987 recruits the steroid receptor coactivator-1 to human LXRalpha and LXRbeta with EC(50)s of 40 nM, profiles as an LXR agonist in functional assays, and activates LXR though a mechanism that is similar to first generation LXR agonists.


Subject(s)
Aniline Compounds/chemical synthesis , DNA-Binding Proteins/agonists , Maleimides/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/genetics , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Binding Sites , Cell Line , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , Genes, Reporter , Histone Acetyltransferases , Humans , Ligands , Liver X Receptors , Luciferases/genetics , Maleimides/chemistry , Maleimides/pharmacology , Models, Molecular , Molecular Structure , Monocytes/drug effects , Monocytes/metabolism , Nuclear Receptor Coactivator 1 , Orphan Nuclear Receptors , Promoter Regions, Genetic , Receptors, Cytoplasmic and Nuclear/chemistry , Structure-Activity Relationship , Transcription Factors/metabolism , Up-Regulation
7.
J Lipid Res ; 46(10): 2182-91, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16024916

ABSTRACT

Liver X receptor (LXR) nuclear receptors regulate the expression of genes involved in whole body cholesterol trafficking, including absorption, excretion, catabolism, and cellular efflux, and possess both anti-inflammatory and antidiabetic actions. Accordingly, LXR is considered an appealing drug target for multiple indications. Synthetic LXR agonists demonstrated inhibition of atherosclerosis progression in murine genetic models; however, these and other studies indicated that their major undesired side effect is an increase of plasma and hepatic triglycerides. A significant impediment to extrapolating results with LXR agonists from mouse to humans is the absence in mice of cholesteryl ester transfer protein, a known LXR target gene, and the upregulation in mice but not humans of cholesterol 7alpha-hydroxylase. To better predict the human response to LXR agonism, two synthetic LXR agonists were examined in hamsters and cynomolgus monkeys. In contrast to previously published results in mice, neither LXR agonist increased HDL-cholesterol in hamsters, and similar results were obtained in cynomolgus monkeys. Importantly, in both species, LXR agonists increased LDL-cholesterol, an unfavorable effect not apparent from earlier murine studies. These results reveal additional problems associated with current synthetic LXR agonists and emphasize the importance of profiling compounds in preclinical species with a more human-like LXR response and lipoprotein metabolism.


Subject(s)
Benzhydryl Compounds/pharmacology , Benzoates/pharmacology , Benzylamines/pharmacology , Carrier Proteins/biosynthesis , DNA-Binding Proteins/agonists , Glycoproteins/biosynthesis , Phenylacetates/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Cholesterol Ester Transfer Proteins , Cholesterol, HDL/drug effects , Cholesterol, LDL/drug effects , Cricetinae , Lipids/blood , Lipoproteins/blood , Liver X Receptors , Macaca fascicularis , Male , Mesocricetus , Orphan Nuclear Receptors
SELECTION OF CITATIONS
SEARCH DETAIL