Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 189: 114774, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824992

ABSTRACT

Furan and 2-methylfuran (2-MF) can form during food processing and accumulate in foods at various concentrations depending on processing technology and beverage/meal preparation methods applied prior to consumption. Here, we report a controlled dosimetry study with 20 volunteers (10 male, 10 female) to monitor dietary furan/2-MF exposure. The volunteers followed an eleven-day furan/2-MF-restricted diet in which they consumed freshly prepared coffee brew containing known amounts of furan and 2-MF on two separate occasions (250 mL and 500 mL on days 4 and 8, respectively). Urine was collected over the whole study period and analyzed for key metabolites derived from the primary oxidative furan metabolite cis-2-butene-1,4-dial (BDA) (i.e., Lys-BDA, AcLys-BDA and cyclic GSH-BDA) and the primary 2-MF metabolite acetylacrolein (AcA, 4-oxo-pent-2-enal) (i.e., Lys-AcA and AcLys-AcA). A previously established stable isotope dilution analysis (SIDA) method was utilized. Excretion kinetics revealed two peaks (at 0-2 and 24-36 h) for AcLys-BDA, Lys-BDA, AcLysAcA and LysAcA, whereas GSH-BDA showed a single peak. Notably, women on average excreted the metabolite GSH-BDA slightly faster than men, indicating gender differences. Overall, the study provided further insights into the spectrum of possible biomarkers of furan and 2-methyfuran metabolites occurring in the urine of volunteers after coffee consumption.


Subject(s)
Biomarkers , Furans , Humans , Furans/urine , Male , Female , Biomarkers/urine , Adult , Coffee/chemistry , Food Contamination/analysis , Young Adult , Dietary Exposure , Middle Aged , Biological Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL