Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
3.
Brief Bioinform ; 22(5)2021 09 02.
Article En | MEDLINE | ID: mdl-33758925

Metabolomics, the comprehensive study of the metabolome, and lipidomics-the large-scale study of pathways and networks of cellular lipids-are major driving forces in enabling personalized medicine. Complicated and error-prone data analysis still remains a bottleneck, however, especially for identifying novel metabolites. Comparing experimental mass spectra to curated databases containing reference spectra has been the gold standard for identification of compounds, but constructing such databases is a costly and time-demanding task. Many software applications try to circumvent this process by utilizing cutting-edge advances in computational methods-including quantum chemistry and machine learning-and simulate mass spectra by performing theoretical, so called in silico fragmentations of compounds. Other solutions concentrate directly on experimental spectra and try to identify structural properties by investigating reoccurring patterns and the relationships between them. The considerable progress made in the field allows recent approaches to provide valuable clues to expedite annotation of experimental mass spectra. This review sheds light on individual strengths and weaknesses of these tools, and attempts to evaluate them-especially in view of lipidomics, when considering complex mixtures found in biological samples as well as mass spectrometer inter-instrument variability.


Computer Simulation , Lipidomics/methods , Lipids/chemistry , Metabolome , Tandem Mass Spectrometry/methods , Databases, Chemical , Humans , Lipids/analysis , Machine Learning , Molecular Structure , Precision Medicine/methods , Software
4.
Stud Health Technol Inform ; 271: 39-48, 2020 Jun 23.
Article En | MEDLINE | ID: mdl-32578539

Changes in lipid homeostasis can lead to a plethora of diseases, raising the importance of reliable identification and measurement of lipids enabled by bioinformatics tools. However, due to the enormous diversity of lipids, most contemporary tools cover only a marginal range of lipid classes. To reduce such a shortcoming, this work extends the lipid species covered by Lipid Data Analyzer (LDA) to galactolipids and oxidized lipids. Appropriate mass lists were generated for MS1 identifications and the proprietary decision rule sets were extended for MS2 identifications of the novel lipid classes. Furthermore, LDA was extended to enable identification of oxidatively modified fatty acyl chains. With these extensions, LDA can reliably identify the most important galactolipids as well as oxidatively modified versions of the 22 previously implemented lipid classes. Comparison with other up to date lipidomics tools show that LDA has a better coverage of the newly implemented lipid species. The extended version of LDA provides researchers with a powerful platform to elucidate diseases caused by perturbations in the oxidized lipidome. LDA is freely available from https://genome.tugraz.at/lda.


Lipidomics , Chromatography, Liquid , Homeostasis , Lipids , Oxidation-Reduction , Tandem Mass Spectrometry
...